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Στόχοι μαθήματος 
 
Ο στόχος του μαθήματος είναι ο/η φοιτητής/τρια που θα έχει παρακολουθήσει το μάθημα να  
 

1.​ γνωρίζει τις στοιχειώδεις έννοιες της Θεωρίας Τύπων και της Θεωρίας Αποδείξεων. 
2.​ μπορεί να χρησιμοποιήσει εργαλεία από τη Θεωρία Κατηγοριών και τη Θεωρία Διάταξης για την 

κατανόηση της έννοιας της απόδειξης και την δομική οργάνωση των μαθηματικών.  
3.​ κατανοεί την έννοια της μαθηματικής απόδειξης ως κατασκευαστική/υπολογιστική διαδικασία 

(πρόγραμμα). 
4.​ έχει την Ικανότητα τυποποίησης μαθηματικών με χρήση βοηθού αποδείξεων (π.χ., Lean, Agda, 

Rocq). 
5.​ να κατανοεί την διαφοροποίηση “δυϊκών” εννοιών όπως Σύνταξη/Σημασιολογία, 

Δυναμικοί/Στατικοί τύποι, Εντατικότητα/Εκτατικότητα, Προδιαγραφή/Υλοποίηση, 
Ανοδική/Καθοδική διαδικασία, Γλώσσα/Μεταγλώσσα, Πρόταση/Κρίση, Τύπος/Σύνολο 
 

Ύλη μαθήματος 
 

1.​ Η έννοια του ορισμού. Η έννοια της απόδειξης. Παραδείγματα ορισμών και αποδείξεων από 
πεδία όπως Ανάλυση, Άλγεβρα.    

2.​ Η έννοιες της δομικής αναδρομής/επαγωγής. Η χρήση της ως τεχνική ορισμού/απόδειξης στα 
μαθηματικά.  

3.​ Στοιχεία λ-λογισμού: ανώνυμες συναρτήσεις και συναρτήσεις υψηλής τάξης. Η έννοια του τύπου. 
Κανόνες συμπερασμού για συστήματα τύπων και αποδείξεων. 

4.​ Οι έννοιες της μαθηματικής προδιαγραφής και υλοποίησης. Μαθηματικές δομές: σύνολα, 
πλειάδες, πλέγματα, μονοειδή, πηλίκα, γινόμενα, και χώροι συναρτήσεων.  

5.​ Στοιχεία Θεωρίας Διάταξης και Κατηγοριών: αντικείμενα και κατασκευές καθορισμένες από 
καθολικές ιδιότητες, ιδιότητες μορφισμών, μεταθετικά διαγράμματα.  Μερικώς διατεταγμένα 
σύνολα και πλέγματα. Η έννοια της δυϊκότητας.  

6.​ Θεωρία τύπων Martin-Löf: στοιχεία θεωρίας αποδείξεων, εξαρτημένοι τύποι, οικογένειες τύπων, 
τύποι Σ και Π. Κατασκευαστικά μαθηματικά. 

7.​ Εισαγωγή στις γλώσσες προγραμματισμού εξαρτημένων τύπων. Βοηθοί αποδείξεων (π.χ., Lean, 
Agda, Rocq). Τυποποίηση συγκεκριμένων μαθηματικών θεωριών. 

 
Τρόπος εξέτασης 
 
Συμμετοχή / Γραπτές εξετάσεις / Σετ ασκήσεων 
 
Σύγγραμμα 
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