(35) A Com 61pos.

Defina os: Nat, List, map, filter, fold, curry, uncurry. DEFINIÇÕES.

EFINIÇOES.		to the second se
Not of Type	historyje - Type gre	mé? UNWIN : a - B -> 67
let- Pat = 0 15 n	doto hister Mill (ens of Chi	300)
	1 5 Hilter ? 6 -	>Bool) -> histor -> histor
moloc (a > p) > h	filter = E.	7-17
[]=[] 9m	sitter P Cx:	1 19x=X (1116) 1 201
wof f (xixs) = (fx	1: Wop f XS	atherwise = filter PXS
fold: (d > a > a) = fold = i [] = i	> ~ > histor > of cutymas (c	1= y. x x
folding [] = 1	wind call	Jr= Jox
fold f 2 (x:xs)=f x	(fold + 2 ×5)/	
1010 1 2000		

(32) B Sem tipes.

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

DEFINIÇÕES.

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | d \cdot d + P | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | d \cdot d + P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | d \cdot d | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P_c > 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

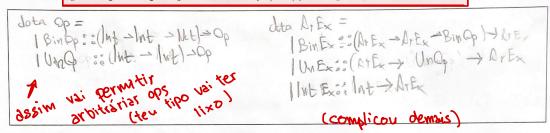
$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$


$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

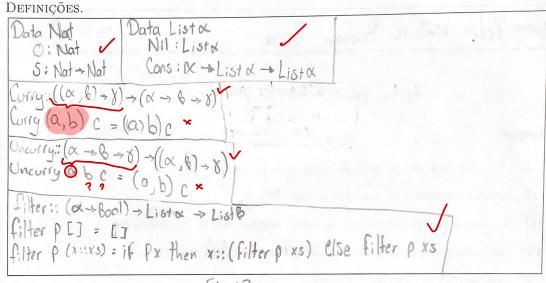
$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

$$\begin{bmatrix}
E \leq c d \cdot d \leq c \leq 2 | P |
\end{bmatrix}$$

(12) C

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.


evol:
$$P_{\text{T}} = 1$$
 and evol (Mt Ex n) = n evol (UnEx x op) = op(evol x) evol (BinEx $P_{\text{T}} = 0$) (evol $P_{\text{T}} = 0$) evol (BinEx $P_{\text{T}} = 0$)

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.

auxiliar:

(35) **A**

Defina os: Nat, List, map, filter, fold, curry, uncurry.

(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

DEFINIÇÕES.

(+) $n \circ 0 = n$ (+) $n \circ 0 = n$ (+) $n \circ 0 = n$ (*) $n \circ$

(12) C

Defina zip em termos da zipWith e zipWith em termos da zip.

Zipwf[][]=[]
Zipwf(x:x)(g::ys)=fzip x::xs y::ys
Zip [i] []=[n]
Zipw f(x::x)(g::ys)=fzip x::xs y::ys
Zip [i] []=[n]
Zipw f(x::x)(g::ys)=fzip x::xs y::ys

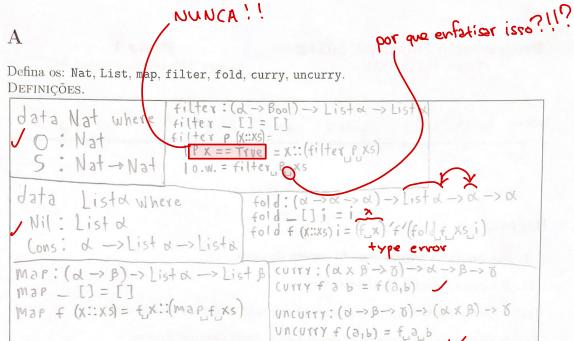
(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

(+): 1 nt > lut > lut

(+): 1 nt > lut > lut

(-): 1 nt > lut > lut

(-): lut > lut


(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

eval:: ArEx Int => 11nt

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.

height:: Ar Ex

(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.

```
Count Down: Nat -> List Nat / Zip: List d -> List (dxB)

count Down O = [0]

count Down Sn = (Sn): (count Down n)

zip With: (d -> B -> D) -> List a -> List B

zip (x::xs) (y::ys) = (x, y)::(zip xs ys)

zip -- = []

zip With: (d -> B -> D) -> List a -> List B

zip With f (a lb = Map (uncurry f) (zip la lb)

Pair: List a -> List (x, a) pecionals

Pair (x::(x'::xs)) = (x, x'): (Pair (x'::xs))

Pair = []

Necessirius
```

(12) C

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_)

```
data Arex where
Bop: (Int -> Int -> Int) -> Arex -> Arex -> Arex
Vor: (Int -> Int) -> Arex -> Arex
Num: Int -> Arex
Nil: Arex
```

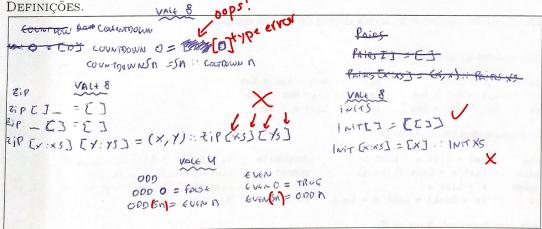
(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

(35) A

Defina os: Nat, List, map, filter, fold, curry, uncurry. DEFINIÇÕES

CATA NAT

O:NAT


O:NAT

NIL = []

MAPFET = [

(32) B

Escolha até 4 das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

(12) **C**

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

Ar &:

(7) **D2.** Defina uma função eval de evaluate que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

EVAL: ASEX TO MIT

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.

Acight: AREX TO NATE

(35) A

Defina os: Nat, List, map, filter, fold, curry, uncurry. DEFINIÇÕES.

data Nat where map:
$$(d \rightarrow B) \rightarrow Listd \rightarrow List B$$

O::Nat map f (x:xs) = f map f xs

Using the map - [] = []

data Lista where curry: $(d \times B \rightarrow B) \rightarrow d \rightarrow B \rightarrow B$

Cons: $d \rightarrow Listd \rightarrow Listd$ uncurry: $(d \rightarrow B \rightarrow B) \rightarrow d \times B \rightarrow B$

filter: $(d \rightarrow Bool) \rightarrow Listd \rightarrow Listd$ uncurry f (a,b) = f a b

filter - [] = []

filter p (x:xs) = if px then x: filter pxs fold b a (x:xs) = (a'b'x) fold b a xs

else filter xs

(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.

Zip
$$(x:x5)(y:y5) = (x,y): Zip \times 5y5$$

Zip $--= []$

ZipWith $f(x:x5)(y:y5) = f \times y: ZipWith f \times 5y5$

Pairs $(x:x5) = (x,x1): pairs \times 5$

Subseqs $[7 = [7]]$

Subseqs $(x:x5) = map(x:)$ (Subseqs $x5$) # Subseqs $x5$

(12) C

$$zip = zipWith (\lambda x.y \Rightarrow (x.y))$$
 $zipWith f = map (\lambda(x,y) + fxy)$, $zip xs$

1) D

Considere o tipo Int dado, junto com suas operações.

(7) D1. Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

```
data Arex where

(+):: (Int -) Arex -) Arex

(-):: (Int -) Arex -) Arex

(-):: (Int -) Arex

(Int -): (Int -) Arex

(Int :: Int -) Arex
```

(7) **D2.** Defina uma função eval de evaluate que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

eval::
$$ArEx \rightarrow Int$$

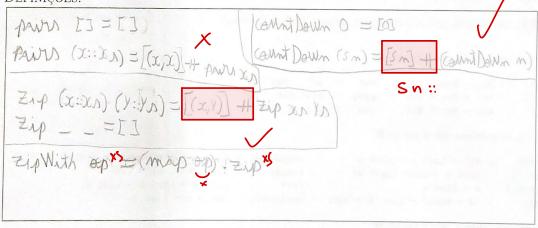
eval $(n+e) = n + (eval e)$
eval $(n.e) = n \cdot (eval e)$
eval $(-n)$

$$\begin{bmatrix} n \ge 0 = 0 - n \\ otherwise = n \end{bmatrix}$$

height:: Artx
$$\rightarrow$$
 Nat
height (Int n) = 0
height (-n) = 0
height (x op(e) = 5 (height e)

fold:
$$(A \rightarrow A \rightarrow A) \rightarrow A \rightarrow List_A \rightarrow A$$

fold ep; $[] = i$
fold ep; $(x::xs) = ep \times (fold ep i xs)$

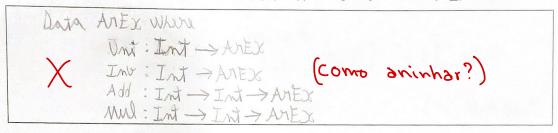

(35) A

Defina os: Nat, List, map, filter, fold, curry, uncurry. DEFINIÇÕES.

data Not Where	List: Type -> Type	(AXX): (AXX) >)
V O : Nat > Nat	LI: List A Where	(A > 20 > C) (WM) & A b = \$(A,B)
map: (A > b) > List A	7 / 1 00017/1 2013	(A > Bood) > List A > List A
map $= [1 = [1]$ map $\pm (x := xx) = \pm x :=$	V filter -	(x:xx)= []=[]
MNCWYUTY: (1 > 20 > c) -	>(Ab) > c) then	$p \times x := (\text{filter } p \times x)$
muching & (v/p) = :	edle das	filter PXS

(32) \mathbf{B}

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.


(12) C

ZipWith ep =
$$(map ep)$$
. Zip = ZipWith pain

Pain: $A \rightarrow b \rightarrow (A,b)$

Pain $A b = (A,b)$

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (\cdot) e a operação unária $(-_)$.

(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

Alight:
$$AnEx \rightarrow Nat$$

Alight $(Vni) = 0$

Alight $(Inv z) = 50 + height z$

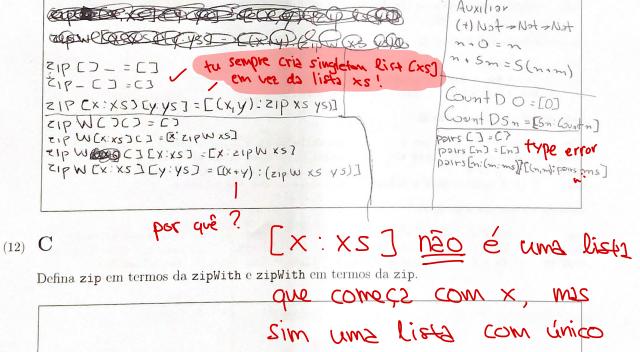
Alight $(Add zz) = 5 (max(Aught z, Aught z))$

Alight $(Mul zz) = 5 (max(Aught z, Aught z))$
 $max : (Nat, Nat) \rightarrow Nat$
 $max : (0, m) = n$
 $max : (n, 0) = m$
 $max : (sn, sm) = 5 (max(n, m))$

Só isso mesmo.

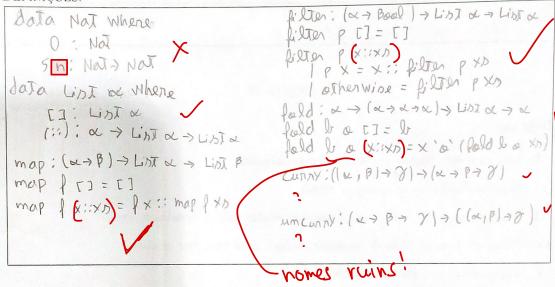
Defina os: Nat, List, map, filter, fold, curry, uncurry. Definições. Filter: (x > Boll) -> Lista > Lista Data Not where: | filter D [x:x5] [px [x: fiterpxs] | C)? | Otherwise Filterpxs | SNot:: Not -> Not | mop:: (~>B) -> List ~ -> List B Data List where:

map p [x:xs] = [px:map p xs]


none muto

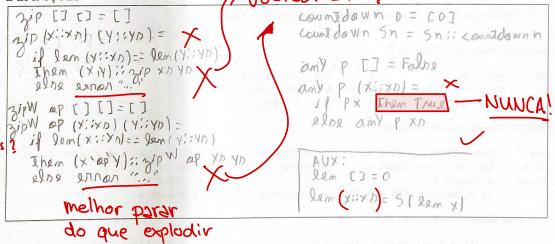
cons x null : a > List a | Curry: ((axβ) + w) + (axβ) + w)

cons x null : a > List a | Uncurry: (a + β + w) + (axβ) + w)


cons x null = [x]

cons x y s = [x:xs] Wms X XS = [X:XS] (32) B Escolha até 4 das funções da primeira página par definir. É proibido usar list comprehension. Veja bem os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.

membro


DEFINIÇÕES.

(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

DEFINIÇÕES. 7 100 Panismo

(12) C

e se 33

listas

3ip = 3ipW (1)	
0' 0'	

(21) **D**

Considere o tipo Int dado, junto com suas operações.

(7) D1. Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

doto AnEx Whene
(+): AnEx = AnEx
x3 nA = x3 nA = x3 nA : (+)
x3 nA = x3 nA = x3 nA : (-): AnEx = bnEx

(-): AnEx = bnEx

e o 42?

(7) **D2.** Defina uma função eval de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

enal: (Anex > Anex > Anex > Anex > Anex > Interval an ap an = (enal (an)) ap (enal (an))

enal: (Anex > Anex > Anex

enal: (Anex > Anex) > Anex

enal: (Anex > Anex) > Anex

enal ap an = - (enal an)

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.

height; AnEx > Nat

assim é = Bool

(35) A

Defina os: Nat, List. map, filter, fold, curry, uncurry

DEFINIÇÕES.

data Nat = 0 | S Nat

data List = Nil 1 cons .. ? map:: $(a \rightarrow \beta) \rightarrow [a] \rightarrow [\beta]$ map - [] = []

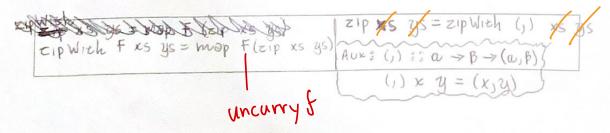
Map F (x:xs) = AF x : map f xs

Filter: (a > Bool) -> [a] > [a] Filter _ []=[]

Filter p (x:xs) 1 px = x: Filter pxs

Fold :: 00 > (a > B > C)>[a]7[6] CURRY :: (a x B > C) > (a > B > C)

uncurry:: (a > b > c) > (a x b > c)


LANGER MYSISHELD

(32) B

Escolha até 4 das funções da primeira página par definir. É proibido usar list comprehension. Veja bem os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES

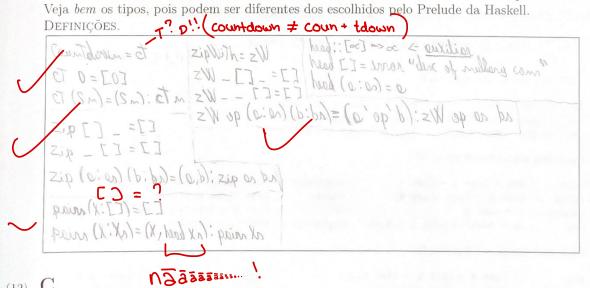
ZIP (x:xs) (y: 4s) = (x,y) : ZIP XS ys ZIP --=[] zipWith F (x:xs) (y:ys)= fxy : zipWith xs ys clp With - - = [] gairs (x: y: xs) = (x, y) : pairs (y: xs) pairs _ = [] count down (sn) = Sn & Countdown n count lown _ = [0]

(12) C

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

ArEx :: Int > ArEx

(7) **D2.** Defina uma função eval de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

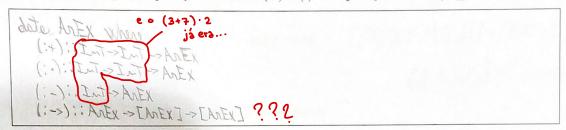

eval :: Allow Ar Ex - Int

eval no many

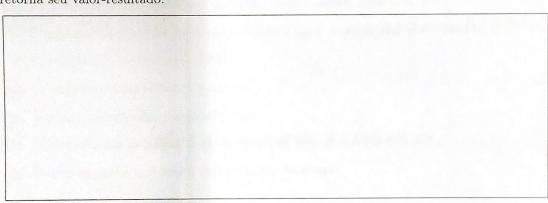
eva

Nat :: *	mop::(0=->β)->[00]->[B]	499
erely toll state	M2=[]- gam	00 1
Tall:: 0	ax & gam: X & = [1 X: X) & gam	E E 3
TaNG-TaN:3	filter::(00->Babl)->[0]->[0]	W. T. V.
Lut:: * -> *	(Filter - [] = []	× 34 ·
dote [a] where	filter p(x:x)	8,50 8
[]::[@] []::\\ \ ->[\\]-7[Inx=lifitury	8
1/2 (00 -> B -> X)->(00	of a relief = enthrulle 1 x218	\$ 7.70
uncurry of (a,b)=fo		£(×

Escolha até 4 das funções da primeira página par definir. É proibido usar list comprehension.



(12) C


(32) B

Zip go go = zipWith (1x>(VxX) - V(xX)) go bo	
(ad no giz) (go wrumanu) gam = rd no go Millgiz	

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (\cdot) e a operação unária $(-_)$.

(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

DEFINIÇÕES.

data Nat =
$$0 \mid 5$$
 Nat

data List $a = [] \mid (a : List a)$

map $f [] = []$

map $f (x : xs) = f x : map f xs$

filter $p [] = []$

fold op $b [] = b$

fold op $b (x : xs) = x \text{ 'op' fold op b xs}$
 $| p x = x : filter p xs | curry : ((a_1b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c$
 $| otherwise = filter p xs | curry f a b = f (a_1b)$

uncurry $f (a_1b) = f a b$

(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. **D**EFINIÇÕES.

Zip
$$(x:xs)$$
 $(y:ys)=(x_1y):Zip xs ys$

Zip $-= = []$

ZipWith $f(x:xs)$ $(y:ys) = fx y:ZipWith xs ys$

ZipWith $f-= = []$

Pairs $(x_1:x_2:xs) = (x_1,x_2):$ Pairs $(x_2:xs)$

Pairs $[x] = []$

Count Down $0 = [0]$

Count Down $(sn) = (sn):$ Count Down n

Auxiliar

(12) C

Defina zip em termos da zipWith e zipWith em termos da zip. Poir a b = (a,b)

co qual a definicão

Considere o tipo Int dado, junto com suas operações.

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

Neg

data ArEx = Int | -Int | Int: +Int | Int: Int

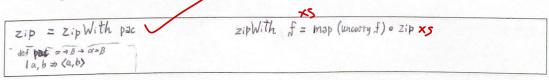
rão seria o que tu imaginar 1950

(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

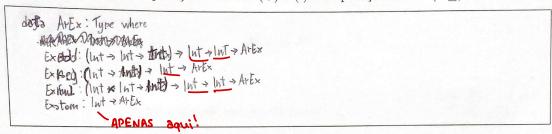
eval: ArEx - Int

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.

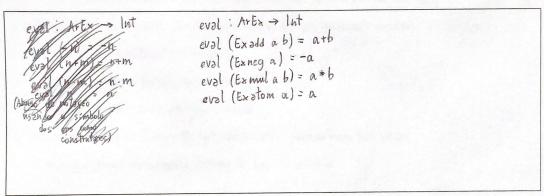
height: : ArEx - Nat

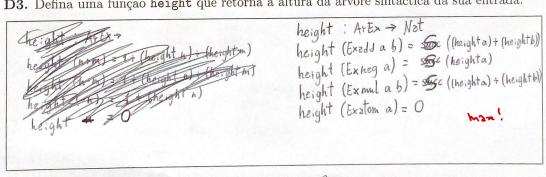

O: Nat Op, e, x::xs \Rightarrow Op \times (fold op $e \times s$) S: Nat \rightarrow Nat -, e, $-\Rightarrow$ Nat -, e, $-\Rightarrow$ Nat Nat Op, e, x::xs \Rightarrow Op \times (fold op $e \times s$) Inductive List (α : Type) where def curry: $(\alpha \times \beta \to \delta) \Rightarrow \alpha \to \beta \to \delta$	
inductive List (x: Tupe) where	-
Nil: List a) def curry (axp)	
Consider ist a > List a	
Infor: $(\alpha \to \beta) \to \text{List}(\alpha \to \text{List}(\beta))$ def uncurry: $(\alpha \to \beta \to \gamma) \to \alpha \times \beta \to \gamma$	
$1 - Nil \Rightarrow Nil \checkmark $	
1 7 X X 3 5 (7 X) - (110) 4 X 3	
def filter: (a > Bool) > Lista → Lista 1-1. Nil > Nil	
IP, X::xs => if (px) then x::(d:lter pxs) propaganda d=tactydy	

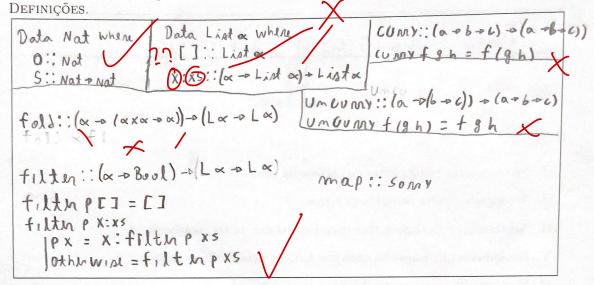
(32) B


Escolha $até\ 4$ das funções da primeira página par definir. É **proibido** usar list comprehension. Veja bem os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

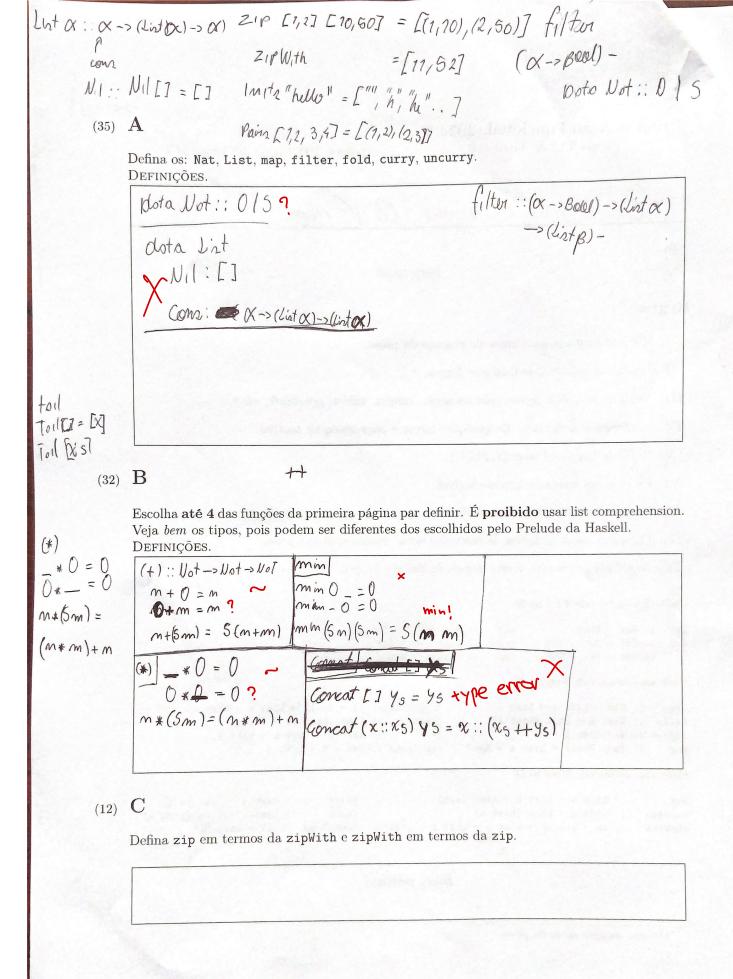
DEFINIÇÕES. Se POSSE [1,2,3) \mapsto [(1,0),(2,3)] \Rightarrow [(1,0),(2,3)]


(12) C




(7) D1. Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (\cdot) e a operação unária $(-_)$.

(7) D2. Defina uma função eval de evaluate que dada uma expressão aritmética de inteiros retorna seu valor-resultado.



(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.

(12) C

```
Zip=Zipwith (x) Lista Listb
Zipwith= 5. my ??
```


DEFINICÕES

DEFINIÇÕES.	-18 -10
Nat: Type Int: Type Type mp: (x - B) -	THTHP
data Nat data hist x map = [] = =	[]
O: Nat Nil: List K (Map & (4:185) =	: (5 n) :: (map & xs)
S: Nat -> Nat Cons: K - List x -> List x	
Land Court In a Sal	-> (X-7B-20)
Just : (post) - KX - Katry to b = 1 (a))
$\exists i \mid tor - [] = []$ uncurry: $(x \rightarrow \beta \rightarrow \delta)$.	>(xxb->1)
Silter $p(x::2s) = if(pz)$ uncurry $f(a,b) = fa$	ab
then withs' fold: (x -> x - x) -> x else xs' fold = e r 7 - =	-> LX -> K
else xs' Sold _ e [] = =	
where $xs' = filter p as$ fold $fe(x::xs) = f$:	a (fold fe rs)

(32) B

Escolha $até\ 4$ das funções da primeira página par definir. É proibido usar list comprehension. Veja bem os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

DEFINIÇÕES.

Zip:
$$[]$$
 = $[]$ = $[]$ | Countdown $0 = [o]$ | Countdown $(Sn) = (Sn)$:: Countdown $(Sn) = (Sn)$::

C (12)

Defina zip em termos da zipWith e zipWith em termos da zip.

$$ZiP = ZiPWith \left(\lambda z. \lambda y. (z, y)\right)$$

alterar o enunciado não é uma boa!. Permission denied

(21) **D**

Considere o tipo Int dado, junto com suas operações.

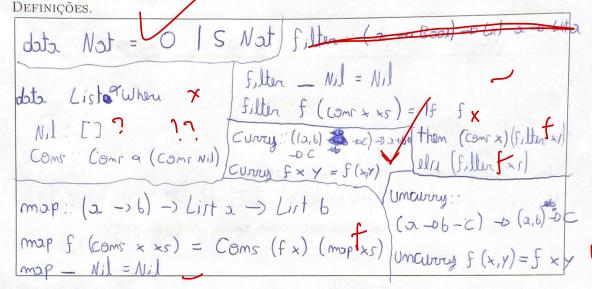
re de outros

(7) D1. Defina un tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

Arex: Type -> Type X

Dota Arex &

Nul: x -> Arex &


Un: (x -> x) -> Arex & -> Arex &

Bin: (x -> x -> x) -> Arex & -> Arex &

(7) **D2.** Defina uma função eval de evaluate que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

eval (Nula) = a eval (un f ex) = f (eval ex) eval (bin g ex, enz) = g_{\perp} (eval ex₁) u (eval ex₂)

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.

(32) B

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell.

DEFINIÇÕES. $\begin{aligned}
ZiP & Nil & Nil &= Nil \\
(+) & M & Q &= M \\
(+) & M & (Sm) &= S (m+m) ZiP & Nil & (Comi y yi) &= Comi y yi) &= Comi (x,y) \\
ZiP & (Comi x xi) & (Comi y yi) &= Comi (x,y) \\
ZiP & (Comi x xi) & (Comi y yi) &= Comi (x,y) \\
ZiP & (xi,yi) &= True \\
(*) & M & Sm &= M &+ (m(*) m) & odd & M &= if Themetical (rem(m,sio)) &= True \\
X & False & True$ NUNCC

Defina zip em termos da zipWith e zipWith em termos da zip.

zipWith = odd ((conr(x,y)) zip(xs,yr)) Zip = Conr(x,y)

(21) **D**

Considere o tipo Int dado, junto com suas operações.

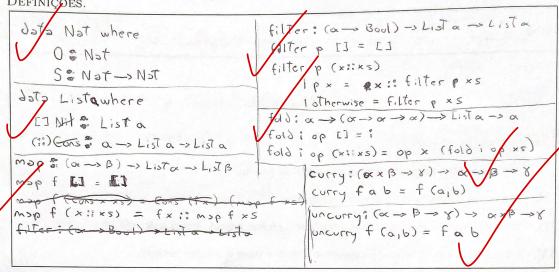
(7) **D1.** Defina um tipo de dados **ArEx** para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operaçõe unária (-_).

data ArEx where:

(+) Int = 0 int = 0 int

(-): int = 0 int

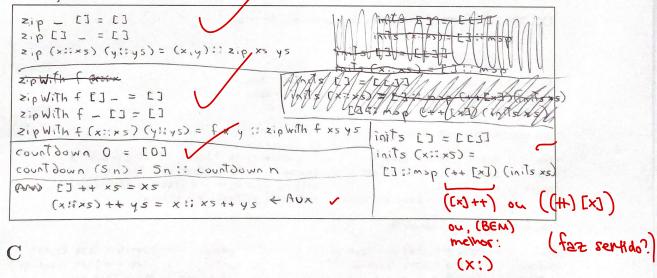
(-): int = 0 int


(-): int = 0 int

(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

eval: ArEx -D Int

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.


height: ArEx -o Nat

(32) B

(12)

Escolha **até 4** das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.

(7) **D1.** Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

```
(:-): ArEx -> ArEx

(:-): ArEx -> ArEx
```

(7) **D2.** Defina uma função **eval** de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

```
eval: ArEx \rightarrow InT

eval (Lit;) = ;

eval (ex :+ ex') = eval ex + eval ex!

eval (ex :• ex') = eval ex • eval ex!

eval (:- ex) = - (eval ex)
```

```
height (Lit:) = 0

height (ex:+ ex!) = S (m>x (height ex) (height ex!))

height (ex:* ex!) = S (m>x (height ex) (height ex!))

height (ex:* ex!) = S (m>x (height ex) (height ex!))

height (:- ex) = S (height ex)
```

DEPINIÇÕES.

Nat: *

dota Nat Where

O:: Nat

S: Not = Nat

Cist: * = *

Cist: * = *

Cist: * = *

Cist: * = *

Cons: d = Listed = Listed

Filter : (d = Bool) = Listed = Listed

Aill:: Listed

Cons: d = Listed = Listed

Fold:: d = (d = d = d) = Listed

List: *

List: *

Cons: d = Listed = Listed

List: *

Cons: d = Listed = Listed

List: *

Cons: d = Listed = Listed

Loting: (d x p = b) = (d = p = b)

Lotery: (d x p = b) = (d = p = b)

Conservery: (d = p = b) = dx p = b

Lotery: (d x p = b) = dx p = b

List: *

(32) B

Escolha **até** 4 das funções da primeira página par definir. É **proibido** usar list comprehension. Veja *bem* os tipos, pois podem ser diferentes dos escolhidos pelo Prelude da Haskell. DEFINIÇÕES.

 $\begin{array}{lll} & \begin{array}{lll} & & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} } & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} } & \begin{array}{lll} & \end{array} \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \begin{array}{lll} & \end{array} \begin{array}{lll} & \end{array} \begin{array}{lll} & \end{array} \end{array} \begin{array}{lll} & \end{array} \begin{array}{lll} & \end{array} \end{array}$

(12) C

Defina zip em termos da zipWith e zipWith em termos da zip.

Zip With f = map (unwrigh). Zip | Zip = Zip with (hahb. (a,b))

Lo To

L

(21) **D**

esses seriam as folhas ha udd.

Considere o tipo Int dado, junto com suas operações.

(7) D1. Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

data Ar Ex were

Node: Int - Ar Ex

Un: (Int - Int) - Ar Ex - Ar Ex

bin: (Int - Int - Int) - Ar Ex - Ar Ex

(7) **D2.** Defina uma função eval de *evaluate* que dada uma expressão aritmética de inteiros retorna seu valor-resultado.

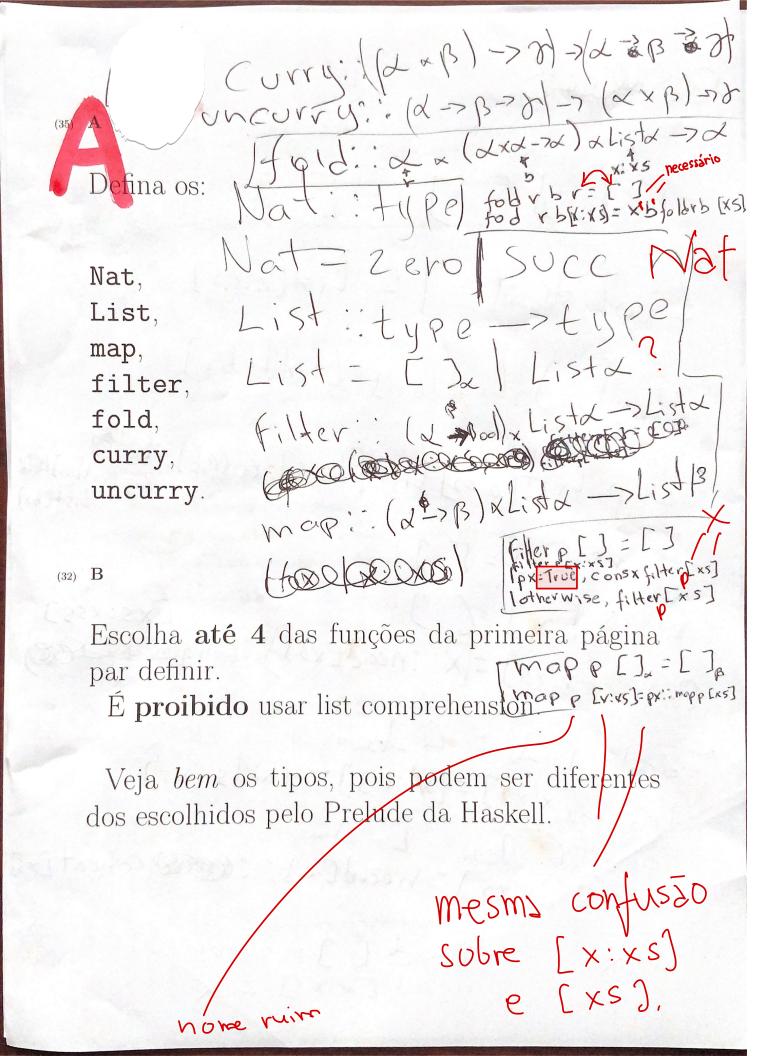
Eval :: Ar Ex - Int

Eval (Node x)= x

Eval (Un op x): op (Eval x)

Eval (bin op xy) = op (Eval x) (Eval y)

(7) D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.


height: $Ac \in X \rightarrow Nat$ height $(Node_-) = 0$ height $(Node_-) = 5$ (neight \times)

height (Un - x) = 5 (neight \times)

height $(bin_- x y) = 5$ (max (height \times , height y))

height $(bin_- x y) = 5$ (max (height \times , height y))

Definições.				
The second secon				
		F. Serv		
D				
B Escolha até 4 de Veja bem os tipo DEFINIÇÕES.	as funções da primeira pá os, pois podem ser difere	gina par definir. É p ntes dos escolhidos	oroibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É r ntes dos escolhidos	proibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p ntes dos escolhidos	oroibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É r ntes dos escolhidos	proibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p ntes dos escolhidos	oroibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É r ntes dos escolhidos	oroibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p ntes dos escolhidos	proibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p ntes dos escolhidos	oroibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p	proibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p ntes dos escolhidos	proibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá os, pois podem ser difere	gina par definir. É p	proibido usar lis pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá	gina par definir. É p ntes dos escolhidos	pelo Prelude da	st comprehe Haskell.
Escolha até 4 de Veja <i>bem</i> os tipe	as funções da primeira pá	gina par definir. É p	pelo Prelude da	st comprehe Haskell.
Escolha até 4 da Veja bem os tipo Definições.	os, pois podem ser difere	ntes dos escolhidos	pelo Prelude da	st comprehe Haskell.
Escolha até 4 da Veja bem os tipo Definições.	ermos da zipWith e zip	ntes dos escolhidos	pelo Prelude da	st comprehe Haskell.
Escolha até 4 da Veja bem os tipo Definições.	os, pois podem ser difere	ntes dos escolhidos	pelo Prelude da	st comprehe Haskell.

COPO COSA B Zip[]=[] Eiplist[aias)[] = List[aias] X 2ip[] List[b:bs]=List[b:bs] X Zip List[a:as] List[b:bs]=60(0,b): Colonial Colo pairs []=[] quemé? Puirs [x]=() [XS:XSS] pairs [x:xs] = (x) nead [xs] : pairs (x) dails [] = [[]](por quê?) Jails [x:xs] = [x::[]: tails [xs]

Corcert []cz= []a Corcot [x:xs] = head[x]: "Como Concat [xs]

head [] = emon aux nead (x:xs) = X

Defina zip em termos da zipWith e zipWith

em termos da zip.

Zip with /+ \ _ [] = []

Zip with (+) [x:xs]=head[zip[x:xs]] + head[zip[xs]].:

Zipwith (+)

D1. Defina um tipo de dados ArEx para representar expressões de aritmética de inteiros formadas apenas pelas operações binárias (+) e (·) e a operação unária (-_).

operações.

- dada uma expressão aritmética de inteiros retorna seu valor-resultado.
- D3. Defina uma função height que retorna a altura da árvore sintáctica da sua entrada.