(Turma T56 do Thanos)

Prova 4

(points: 124; bonus: 0^{\flat} ; time: 80')

Nome:

09/07/2018

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- **V.** $\forall x (\text{Colar}(x) \rightarrow \neg \text{Passar}(x, \text{FUN})).$
- VI. Use caneta para tuas respostas.
- VII. Responda dentro das caixas indicadas.
- VIII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
 - IX. Entregue todas as folhas de rascunho extra, juntas com tua prova.
 - X. Nenhuma prova será aceita depois do fim do tempo!
 - XI. Os pontos bônus são considerados apenas para quem consiga passar sem.²
- XII. Responda em até 3 dos problemas.³

Boas provas!

¹Ou seja, desligue antes da prova.

²Por exemplo, 25 pontos bônus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

³Provas com respostas em mais que três problemas não serão corrigidas (tirarão 0 pontos).

(36) **A**

```
Defina os 3 típos de dados:
Nat :: *
                 List :: * -> * Either :: * -> * -> *
e as 9 funções
(+)
           :: Nat -> Nat -> Nat
                                              :: [Nat] -> Nat
                                        sum
concat
           :: [[a]] -> [a]
                                        repeat :: a -> [a]
           :: [Either a b] -> [a] partition :: [Either a b] -> ([a], [b])
lefts
zipWith :: (a \rightarrow b \rightarrow c) \rightarrow [a] \rightarrow [b] \rightarrow [c]
         :: (a -> c) -> (b -> c) -> Either a b -> c
takeWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
sem usar list comprehension.
DEFINIÇÕES.
```

(42)	${f N}$
	Primeiramente defina recursivamente as funções all :: (a -> Bool) -> [a] -> Bool replicate :: Nat -> a -> [a] cada uma com duas equações. Depois prove que
	all (== x) (replicate n x)
	para todo finito n :: Nat e todo x :: a.
(4)	Definições.
(38)	Prova.

D

Primeiramente defina recursivamente as funções

take :: Nat -> [a] -> [a] drop :: Nat -> [a] -> [a]

cada uma com até 3 equações. Depois prove que

take n xs ++ drop n xs == xs

para todo finito n :: Nat e toda finita <math>xs :: [a].

(4)	Definicões.
(-	DELINIÇOES.

ROVA.			

(28)	R
	Defina a função
	foldr :: (a -> b -> b) -> b -> List a -> b
	e depois use-a para definir a
	length :: List a -> Nat
	como um fold.
	Definições.
(36)	${f L}$
	Defina a função
	foldl :: (b -> a -> b) -> b -> [a] -> b
	e depois use-a para definir como um fold a
	dec2int :: [Int] -> Int
	que recebendo um numeral decimal, retorna o número que ele representa:
	ghci> dec2int [1,9,5,0] 1950
	Definições.

RASCUNHO