(Turma N12 do Thanos)

Prova IEA.3

(points: 37; bonus: 0^{\flat} ; time: 48')

Gabarito Nome: $\Theta \acute{\alpha} \lor o \varsigma$

2023-07-05

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $(\forall x) [Colar(x) \implies \neg Passar(x, FMC2)]^2$
- VI. Responda dentro das caixas indicadas.
- VII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
- VIII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.

Esclarecimento. Escreva suas demonstrações e definições em linguagem "high-level" sem comprometer rigor, clareza, e corretude. Escreva em texto compilável em português matemático, sem depender de conhecimento de gírias matemáticas.

Presente. Para esta prova consideramos que teu leitor—e tu—conhecem bem teoria dos grupos. Tudo que definimos/demonstramos sobre grupos é considerado conhecido e utilizável sem definir/demonstrar.

Definição 1. Fixe $\mathcal{R} = (R; +, 0, -, 1)$ um anel. Um \mathcal{R} -módulo (esquerdo) é um grupo abeliano $\mathcal{G} = (G; \oplus, \mathbf{0}, \ominus)$ munido com uma operação $(\cdot): R \times G \to G$ que é compatível com as estruturas, i.e.: (i) para todo $r \in R$, $(r \cdot) : G \to G$ é um endomorfismo de grupos:

$$r \cdot (\boldsymbol{u} \oplus \boldsymbol{v}) = r \cdot \boldsymbol{u} \oplus r \cdot \boldsymbol{v}; \qquad r \cdot \boldsymbol{0} = \boldsymbol{0}; \qquad r \cdot (\ominus \boldsymbol{u}) = \ominus (r \cdot \boldsymbol{u});$$

 $r \cdot (\boldsymbol{u} \oplus \boldsymbol{v}) = r \cdot \boldsymbol{u} \oplus r \cdot \boldsymbol{v}; \qquad r \cdot \boldsymbol{0} = \boldsymbol{0}; \qquad r \cdot (\ominus \boldsymbol{u}) = \ominus (r \cdot \boldsymbol{u});$ (ii) para todo $u \in G$, $(\cdot u) : R \to G$ é um homomorfismo da parte aditiva do $\mathcal R$ para o $\mathcal G$:

$$(r+s) \cdot \mathbf{u} = r \cdot \mathbf{u} \oplus s \cdot \mathbf{u}; \qquad 0 \cdot \mathbf{u} = \mathbf{0}; \qquad (-r) \cdot \mathbf{u} = \ominus(r \cdot \mathbf{u});$$

(iii) "associatividade" e "identidade":

$$(rs) \cdot \boldsymbol{u} = r \cdot (s \cdot \boldsymbol{u}); \qquad 1 \cdot \boldsymbol{u} = \boldsymbol{u}.$$

Um sábio disse: Pensando na currificação $R \times G \to G \cong R \to (G \to G)$, podemos considerar que um R-módulo 9, ganha, além da sua estrutura de grupo abeliano, uma R-família de operações unárias, uma para cada $r \in R$. Em vez de vê-lo como $(\mathfrak{G}; \cdot)$, podemos vê-lo como $(\mathfrak{G}; ((r \cdot))_{r \in R})$.

Definição 2. Sejam \mathcal{R} um anel e $a \in R$. Definimos: a é um L-zero-divisor $\stackrel{\text{def}}{\Longleftrightarrow} (\exists b \neq 0) [ab = 0]$. **Definição 3.** Sejam \mathcal{R} um anel e $u \in R$. Chamamos o u de L-unit sse existe v tal que uv = 1; de R-unit sse existe v tal que vu = 1; e de unit (ou invertível) sse u é L-unit e R-unit. (Obs: o conjunto de todos os units de \mathcal{R} forma um grupo com a multiplicação do \mathcal{R} , que denotamos por \mathcal{R}^{\times} .)

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

(11) R

Escolha exatamente uma das R1, R2.

- (8) **R1.** Sejam \mathcal{R} anel e $a \in R$. Logo a não é um L-zero-divisor sse $(a \cdot)$ é injetiva.
- (11) **R2.** Sejam \mathcal{R} anel e $u \in R$. Logo u é um R-unit sse $(\cdot u)$ é sobrejetiva.

Demonstração de ambas .

R1. (\Rightarrow) Sejam b, c tais que ab = ac. Logo ab - ac = 0. Logo a(b - c) = 0. Logo b - c = 0. Logo b = c. (\Leftarrow) Seja $b \neq 0$ tal que ab = 0. Mas a0 = 0 também, e logo b = 0 (pela injetividade da $(a \cdot)$) contradizendo a escolha de b.

R2. (\Rightarrow) Seja v tal que vu=1. Para mostrar que ($\cdot u$) é sobrejetiva basta achar uma seção dela. Demonstrarei que ($\cdot v$) é uma seção da ($\cdot u$).

Seja $r \in R$.

Calculamos: $((\cdot u) \circ (\cdot v)) r = (\cdot u)(rv) = (rv)u = r(vu) = r1 = r$.

 (\Leftarrow) Seja v tal que $(\cdot u)v = 1$, ou seja vu = 1, e logo u é um R-unit.

(11) I

Escolha exatamente uma das I1, I2.

Seja $\varphi : \mathcal{R} \to \mathcal{S}$ um homomorfismo de aneis.

- (8) I1. $\ker \varphi$ é um ideal de \Re .
- (11) **I2.** φ reflete os ideais, i.e., que para todo ideal J de S, $\varphi^{-1}[J]$ é um ideal de \mathcal{R} . Demonstração de ambas .

I1. Já temos ker $\varphi \leq (R; +, 0, -)$ e logo basta mostrar que ker φ absorve as multiplicações. Sejam $r \in R$, $k \in \ker \varphi$. Calculamos: $\varphi(rk) = (\varphi r)(\varphi k) = (\varphi r)0_{\$} = 0_{\$}$.

ALTERNATIVAMENTE: Imediato pela **I2** tomando $J := \{0_8\}$.

I2. Seja J ideal de S.

Basta mostrar que $\varphi^{-1}[J]$: (i) é habitado; (ii) é fechado pela subtração; (iii) absorve a multiplicação.

- (i) Como $\varphi 0_R = 0_S$, logo $0_R \in \varphi^{-1}[J]$ e logo é habitado.
- (ii) Sejam $i, i' \in R$ tais que $\varphi i = 0_S = \varphi i'$.

Calculamos: $\varphi(i-i') = (\varphi i) - (\varphi i') \in J$ pois J é ideal e logo $i-i' \in \varphi^{-1}[J]$.

(iii) Sejam $r \in R$ e $i \in \varphi^{-1}[J]$.

Calculamos: $\varphi(ri) = (\varphi r)(\varphi i) \in J$ pois $\varphi i \in J$ e J absorve multiplicações no S.

(15) M

(5) M1. Defina homomorfismo entre \Re -módulos.

DEFINIÇÃO.

Sejam \mathcal{G},\mathcal{H} \mathcal{R} -módulos. Uma função $\varphi:G\to H$ é um homomorfismo sse: φ é um homomorfismo do grupo abeliano \mathcal{G} para o grupo abeliano \mathcal{H} [basta: $\varphi(\boldsymbol{u}\oplus_G\boldsymbol{v})=(\varphi\,\boldsymbol{u})\oplus_H(\varphi\,\boldsymbol{v})$]; φ respeita todos os $(r\,\boldsymbol{\cdot}\,)$: $\varphi(r\,\boldsymbol{\cdot}\,\boldsymbol{u})=r\,\boldsymbol{\cdot}(\varphi\,\boldsymbol{u})$.

(5 + 5) **M2.** Adivinha uma única "equação" que serviria como critério de homomorfismo entre \Re -módulos. Escreva essa equação estilo point-free, e a acompanhe com o diagrama comutativo correspondente.

EQUAÇÃO E DIAGRAMA COMUTATIVO.

$$(\forall \boldsymbol{u}, \boldsymbol{v} \in \mathfrak{G}) [\varphi ((r \cdot \boldsymbol{u}) \oplus_{G} (s \cdot \boldsymbol{v})) = (r \cdot (\varphi \, \boldsymbol{u})) \oplus_{H} (s \cdot (\varphi \, \boldsymbol{v}))]$$

$$\varphi \circ (\oplus_{G}) \circ ((r \cdot) \times (s \cdot)) = (\oplus_{H}) \circ ((r \cdot) \times (s \cdot)) \circ (\varphi \times \varphi)$$

$$G \times G \xrightarrow{(r \cdot) \times (s \cdot)} G \times G \xrightarrow{(\otimes_{G})} G$$

$$\downarrow^{\varphi \times \varphi} \qquad \qquad \varphi \downarrow$$

$$H \times H \xrightarrow{(r \cdot) \times (s \cdot)} H \times H \xrightarrow{(\otimes_{H})} H$$

M3. Considerando como objetos os \mathcal{R} -módulos e como setas teus homomorfismos do M1, verifique que eles formam uma categoria, onde identidades são as identidades e composições as composições—duh! VERIFICAÇÃO.

Basta verificar que identidades são homos e que composição de homos é homo. A $\mathbf{M1}.(\mathrm{i})$ já verificamos (\mathbf{Grp}). A $\mathbf{M1}.(\mathrm{ii})$: $G \xrightarrow{\mathrm{id}} G \qquad G \xrightarrow{\psi} H \xrightarrow{\varphi} K$ id $(r \cdot \boldsymbol{u}) \qquad (\varphi \circ \psi) (r \cdot \boldsymbol{u})$ $= r \cdot (\mathrm{id} \, \boldsymbol{u}). \qquad = \varphi (\psi (r \cdot \boldsymbol{u}))$ $= \varphi (r \cdot (\psi \, \boldsymbol{u}))$ $= r \cdot (\varphi (\psi \, \boldsymbol{u}))$ $= r \cdot ((\varphi \circ \psi) \, \boldsymbol{u}).$

Obs: aqui "pontos" são apenas os habitantes do nosso mundinho (\mathfrak{G}) , não os rzinhos do R.

LEMMATA