Prova CFR2.1

(points: 42; bonus: 0^{\flat} ; time: 48')

Nome:

2023-07-05

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $(\forall x) [\text{Colar}(x) \implies \neg \text{Passar}(x, \text{FMC2})].^2$
- VI. Responda dentro das caixas indicadas.
- VII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
- VIII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.
 - IX. Escolha exatamente dois problemas (letras) para resolver.³

Lembrete:

$$\wp A \stackrel{\text{def}}{=} \text{O conjunto de partes de } A \quad A =_{\text{c}} B \stackrel{\text{def}}{\Longleftrightarrow} \text{Os } A, B \text{ são equinúmeros}$$

$$\wp_{\text{f}} A \stackrel{\text{def}}{=} \{X \subseteq A \mid X \text{ é finito}\} \qquad A \leq_{\text{c}} B \stackrel{\text{def}}{\Longleftrightarrow} (\exists C) \left[C \subseteq B \land A =_{\text{c}} C\right]$$

$$A^* \stackrel{\text{def}}{=} \bigcup_{n=0}^{\infty} A^n \qquad \Longleftrightarrow (\exists f : A \to B) \left[f \text{ injetiva}\right]$$

$$\overline{n} \stackrel{\text{def}}{=} \{i \in \mathbb{N} \mid i < n\} \qquad (A <_{\text{c}} B) \stackrel{\text{def}}{\Longleftrightarrow} A \leq_{\text{c}} B \& A \neq_{\text{c}} B.$$

Presente. Podes usar as seguintes equinumerosidades sem demonstrar:

$$\mathbb{N} =_{c} \mathbb{Z} =_{c} \mathbb{Q} =_{c} \wp_{f} \mathbb{N} =_{c} \mathbb{N}^{2} =_{c} \mathbb{N}^{*};$$

$$\mathbb{R} =_{c} \mathbb{R}^{2} =_{c} (0, 1) =_{c} \wp \mathbb{N} =_{c} (\mathbb{N} \to \overline{2}).$$

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Provas violando essa regra (com respostas em mais problemas) não serão corrigidas (tirarão 0 pontos).

(21))	l	

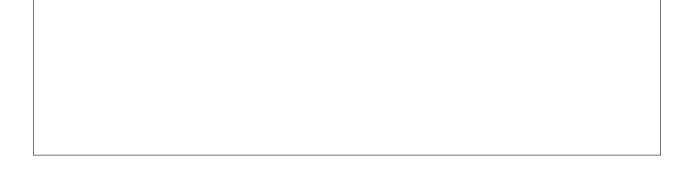
Escolha exatamente um dos C1,C2,C3,C4,C5

- (9) **C1.** $(A \rightarrow B) \leq_{\mathrm{c}} \wp(A \times B);$
- (15) **C2.** $(\mathbb{N} \to \mathbb{N}) =_{\mathbf{c}} \wp \mathbb{N};$
- (21) **C3.** $(\mathbb{N} \to \mathbb{R}) =_{c} \mathbb{R};$
- (21) **C4.** $(0,1) =_{c} (0,1];$
- (21) **C5.** $\mathbb{R}_{>0} =_{\mathbf{c}} \mathbb{R}$.

Restrições: para os C4 e C5 não podes utilizar o Cantor-Schröder-Bernstein; precisas definir mesmo uma bijeção.

Não precisa demonstrar que tuas funções são realmente injetivas/sobrejetivas/bijetivas; apenas definilas.

Resposta para _____ .


(12) **D**

Sejam as relações seguintes no $(\mathbb{N} \to \mathbb{N})$:

$$\begin{split} f &\stackrel{\text{e}}{=} g \iff f(2n) = g(2n) \text{ para todo } n \in \mathbb{N} \\ f &\stackrel{\circ}{=} g \iff f(2k+1) = g(2k+1) \text{ para todo } k \in \mathbb{N}. \end{split}$$

A relação ($\stackrel{e}{=} \diamond \stackrel{\circ}{=}$) é a relação trivial True?

DEMONSTRAÇÃO/REFUTAÇÃO.

Γ	
-	
С	י
Ε	
V	o conjunto $\mathbb R$ sejam as relações definidas pelas:
• /	$\smile y \iff x \le y \& \neg (\exists n \in \mathbb{R}_{\mathbb{Z}}) [x \le n \le y] \qquad x \frown y \iff x \le y \& \neg (\exists n \in \mathbb{R}_{\mathbb{Z}}) [x < n < y]$
1	ejam ($\ddot{\sim}$) o fecho reflexivo-simétrico da (\sim), e ($\ddot{\sim}$) o fecho simétrico da (\sim).
J	ma das (¨), (¨) é relação de equivalência, a outra não é.
F	1. Para aquela que é, descreva seu conjunto quociente.
R	ESPOSTA.
F	2. Para aquela que não é, refute.
	EFUTAÇÃO.
_	, 21 · 11 · 12 · 10 · 10 · 10 · 10 · 10 ·
Ĺ	

(21) \mathbf{E}

Lemmata

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		

Rascunho