Prova 2.1

(points: 100; bonus: 0^{\flat} ; time: 60')

Nome: Θάνος Gabarito

10/05/2019

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $\forall x (\text{Colar}(x) \rightarrow \neg \text{Passar}(x, \text{FMC2})).^2$
- VI. Use caneta para tuas respostas.
- VII. Responda dentro das caixas indicadas.
- VIII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
 - IX. Entregue todas as folhas de rascunho extra, juntas com tua prova.
 - X. Nenhuma prova será aceita depois do fim do tempo!
 - XI. Os pontos bônus são considerados apenas para quem consiga passar sem.³
- XII. Responda em até 2 dos A, B, C.4

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Por exemplo, 25 pontos bônus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

⁴Provas com respostas em mais que isso não serão corrigidas (tirarão 0 pontos).

Lembram-se:

Definição 1 (grupo; grupo abeliano). Um conjunto estruturado $\mathfrak{G} = \langle G; *, ^{-1}, e \rangle$ é um grupo sse:

$$(\forall a, b \in G) \left[a * b \in G \right] \tag{G0}$$

$$(\forall a, b, c \in G) \left[a * (b * c) = (a * b) * c \right] \tag{G1}$$

$$(\forall a \in G) [e * a = a = a * e] \tag{G2}$$

$$(\forall a \in G) \left[a^{-1} * a = e = a * a^{-1} \right] \tag{G3}$$

Se 9 satisfaz as (G0)–(G3) em cima e a

$$(\forall a, b \in G) \left[a * b = b * a \right] \tag{G4}$$

chamamos o g grupo abeliano.

Definição 2. Sejam G grupo $g \in G$, e $A, B \subseteq G$. Definimos

$$gA \stackrel{\text{def}}{=} \{ga \mid a \in A\}$$
 $AB \stackrel{\text{def}}{=} \{ab \mid a \in A, b \in B\}$... etc.

Definição 3 (subgrupo). Seja G grupo e $H \subseteq G$. O H é um subgrupo de G (escrevemos $H \subseteq G$) sse H forma um grupo com a mesma operação (restrita no $H \times H$).

Definição 4 (conjugação). Seja G grupo e $a, b \in G$. Chamamos o b conjugado de a sse existe $g \in G$ tal que $a = gbg^{-1}$. Escrevemos $a \approx b$.

Definição 5 (subgrupo normal). Um subgrupo $N \leq G$ é subgrupo normal de G sse

$$N \leq G \iff N$$
 é fechado pelos conjugados
$$\iff \text{para todo } n \in N \text{ e } g \in G, \ gng^{-1} \in N$$

$$\iff \text{para todo } g \in G, \ gN = Ng$$

Definição 6 (homomorfismo de grupo). Um homomorfismo φ do grupo $\langle A ; \cdot_A, inv_A, e_A \rangle$ para o grupo $\langle B ; \cdot_B, inv_B, e_B \rangle$ é uma função $\varphi : A \to B$ tal que:

- (i) para todo $x, y \in A$, $\varphi(x \cdot_A y) = \varphi(x) \cdot_B \varphi(y)$;
- (ii) para todo $x \in A$, $\varphi(inv_A x) = inv_B(\varphi(x))$;
- (iii) $\varphi(e_A) = e_B$.

Definição 7 (kernel). Sejam A e B grupos e φ homomorfismo de A para B. Definimos

$$\ker \varphi \stackrel{\text{def}}{=} \{ x \in A \mid \varphi(x) = e_B \} .$$

Boas provas!

(24) \mathbf{A}

Demonstre pelos (G0)–(G3) a unicidade de inversos:

Seja G grupo. Para todo $a \in G$, a^{-1} é seu único inverso.

PROVA.

Seja $a \in G$. Sabemos que a^{-1} é um inverso de a pela (G3). Então basta demonstrar que quaisquer inversos y, y' de a são iguais. Sejam y, y' inversos de a, e logo ay = e e ay' = e. Temos então que

$$ay = ay'$$
.

Logo (operando nos dois lados por a^{-1} pela esquerda) temos

$$a^{-1}(ay) = a^{-1}(ay')$$

e pela associatividade (G1) temos

$$(a^{-1}a)y = (a^{-1}a)y'$$

mas o a^{-1} é um inverso de a e logo

$$ey = ey'$$

e agora pela (G2) temos

$$y = y'$$
.

Definição. Um homomorfismo $\varphi: \mathcal{A} \to \mathcal{B}$ é isomorfismo sse φ é invertível, ou seja:

existe homomorfismo
$$\varphi': \mathcal{B} \to \mathcal{A}$$
 tal que $\varphi'\varphi = \mathrm{id}_A \& \varphi\varphi' = \mathrm{id}_B$.

SejamG,G'grupos e $\varphi:G\to G'$ homomorfismo. Demonstre que:

$$\varphi$$
 iso $\iff \varphi$ bijetora

PROVA.

 (\Rightarrow) : Suponha φ iso. Logo seja $\varphi': B \to A$ homomorfismo tal que $\varphi'\varphi = \mathrm{id}_A$ e $\varphi\varphi' = \mathrm{id}_B$. Esquecendo a parte de homomorismo da φ' , temos uma função que satisfaz essas duas igualdades, e logo ela é a função inversa da φ , e logo φ é bijetiva.

 (\Leftarrow) : Suponha φ bijetiva. Logo existe sua função inversa $\varphi^{-1}: B \to A$ e a única coisa que preciso demonstrar é que ela é um homomorfismo. Sejam $x,y \in B$. Como φ é injetora, para demonstrar que

$$\varphi^{-1}(xy) = (\varphi^{-1}x)(\varphi^{-1}y)$$

basta mostrar que

$$\varphi(\varphi^{-1}(xy)) = \varphi((\varphi^{-1}x)(\varphi^{-1}y)).$$

Calculamos os dois lados

$$\varphi(\varphi^{-1}(xy)) = xy \qquad (\text{def. } \varphi^{-1})$$

$$\varphi((\varphi^{-1}x)(\varphi^{-1}y)) = (\varphi(\varphi^{-1}x))(\varphi(\varphi^{-1}x)) \qquad (\varphi \text{ homo: resp. op.})$$

$$= xy \qquad (\text{def. } \varphi^{-1})$$

Seja G grupo e $(H_i)_{i\in\mathcal{I}}$ família indexada $(\mathcal{I}\neq\emptyset)$ de subgrupos de G, tal que ela é \subseteq -directed, ou seja:

para todo
$$u, v \in \mathcal{I}$$
, existe $w \in \mathcal{I}$ tal que $H_u \subseteq H_w$ e $H_v \subseteq H_w$. (D)

Demonstre que

$$\bigcup_{i\in\mathcal{I}}H_i\leq G.$$

Se usar algum critérion para demonstrar isso, precisas demonstrar o critérion também. Prova.

Vou demonstrar que:

- (i) $e \in \bigcup_j H_j$;
- (ii) $\bigcup_j H_j$ é ⁻¹-fechado;
- (iii) $\bigcup_j H_j$ é *-fechado.
- (i) Seja $i \in \mathcal{I}$. Logo $H_i \leq G$, e como $e \in H_i$, temos $e \in \bigcup_i H_i$.
- (ii) Seja $x \in \bigcup_j H_j$. Logo seja $i_x \in \mathcal{I}$ tal que $x \in H_{i_x}$. Como $H_{i_x} \leq G$ e logo $^{-1}$ -fechado, temos $x^{-1} \in H_{i_x}$. Logo $x \in \bigcup_j H_j$.
- (iii) Sejam $x, y \in \bigcup_j H_j$. Logo sejam $i_x, i_y \in \mathcal{I}$ tais que $x \in H_{i_x}$ e $y \in H_{i_y}$. Pela hipótese (D), seja $w \in \mathcal{I}$ tal que $H_{i_x} \subseteq H_w$ e $H_{i_y} \subseteq H_w$. Logo $x, y \in H_w$. Mas $H_w \leq G$, e logo $xy \in H_w$ (pois H_w é *-fechado). Logo $xy \in \bigcup_j H_j$.

(26) **Z**

Demonstre pelos axiomas de anel que se R é um anel e 0=1, então R é um singleton. Prova.

Vou demonstrar que $R = \{0\}$. Basta demonstrar que para todo $r \in R, r = 0$. Seja $r \in R$ então e calculamos:

$$0 = r0$$
 (Lemma 1)
 $= r1$ (0 = 1)
 $= r$ (1 \(\epsilon\) -identidade)

Basta então demonstrar o

Lemma 1. Seja R and. Para todo $r \in R$, 0 = r0.

DEMONSTRAÇÃO. Seja $r \in R$. Vou demonstrar que r0 = 0; enxergo a afirmação na forma seguinte: «r0 é a +-identidade». Observe que sei que a identidade é única, pois $\langle R; +, -, 0 \rangle$ é um grupo. Calculo

$$r0 + r0 = r(0+0)$$

$$= r0$$
(RDL)
(RA2)

Pelas "identidades mais baratas" agora já podemos afirmar que r0 é a +-identidade.

(Alternativamente podemos adicionar nos dois lados o -(r0), efetivamente copiando a demonstração que já fizemos nos grupos.)