(points: 28/100; bonus: 0^{\flat} ; time: 50°)

Nome:

23/03/2018

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- **V.** $\forall x (\text{Colar}(x) \rightarrow \neg \text{Passar}(x, \text{FMC2})).^2$
- VI. Use caneta para tuas respostas.
- VII. Responda dentro das caixas indicadas.
- VIII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
 - IX. Entregue todas as folhas de rascunho extra, juntas com tua prova.
 - X. Nenhuma prova será aceita depois do fim do tempo.
 - XI. Os pontos bônus são considerados apenas para quem consiga passar sem.³
- XII. Responda em até 2 dos A, B, C.⁴

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Por exemplo, 25 pontos bonus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

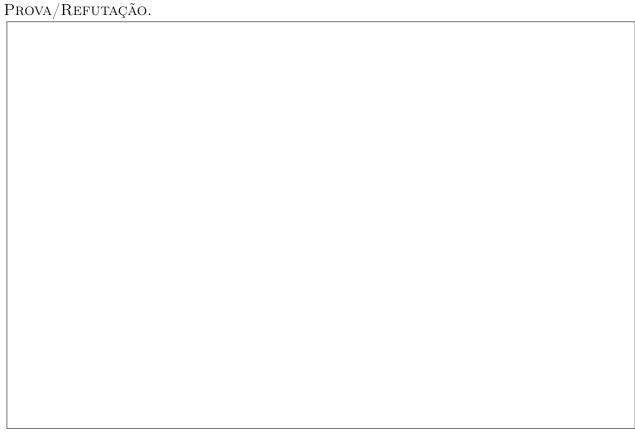
⁴Provas com respostas nos três problemas não serão corrigidas (tirarão 0 pontos).

(6)	\mathbf{A}
(2)	A1. Defina formalmente (usando ou " $\cdots \stackrel{\text{def}}{\Longleftrightarrow} \cdots$ " ou " $\cdots \stackrel{\text{def}}{=} \cdots$ ") o operador binário \triangle , e o operador unário \bigcup . Não assuma que o leitor sabe o significado dos \setminus , \cup , \cap .
	Definição de \triangle :
	Definição de U:
(4)	A2. Seja A conjunto. Prove ou refute a afirmação:
	$\bigcup A \neq \emptyset \implies A \neq \emptyset.$
	Prova/Refutação.

	_
(19)	\vdash
(12)	

(6) **B1.** Sejam A, B, C conjuntos. Prove ou refute a afirmação:

$$A\times (B\cup C)=(A\times B)\cup (A\times C).$$



(6) **B2.** Sejam \mathscr{A},\mathscr{B} famílias de conjuntos com $\mathscr{A}\cap\mathscr{B}\neq\emptyset$. Prove ou refute a afirmação:

$$\bigcap \mathscr{A} \subseteq \bigcup \mathscr{B}.$$

PROVA/REFUTAÇÃO.

C1. Sejam $\{A_n\}_n$ e $\{B_n\}_n$ duas seqüências de conjuntos, tais que: para todo número par $m, A_m \subseteq B_{m/2}$. Prove que: $\bigcap_{n=0}^{\infty} A_n \subseteq \bigcap_{n=0}^{\infty} B_n.$ PROVA. C2. Sejam $\{A_n\}_n$ e $\{B_n\}_n$ duas seqüências de conjuntos de números naturais, tais que: para todo $n \in \mathbb{N}, A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$ Demonstração.	C1	Sojam (A) a (D) duos sosijâncies de conjuntes tois que
Prove que: $\bigcap_{n=0}^\infty A_n \subseteq \bigcap_{n=0}^\infty B_n.$ Prova. $\textbf{C2.} \text{Sejam } \{A_n\}_n \text{ e } \{B_n\}_n \text{ duas seqüências de conjuntos de números naturais, tais que: } \\ \text{para todo } n \in \mathbb{N}, \ A_n \subsetneq B_n.$ Mostre que em geral $n\tilde{a}o$ $podemos$ $concluir$ que $\bigcap_{n=0}^\infty A_n \subsetneq \bigcap_{n=0}^\infty B_n.$	C1.	
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		we que: $\bigcap_{n=0}^{\infty}A_{n}\subseteq\bigcap_{n=0}^{\infty}B_{n}.$
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{ao}$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. Mostre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$		
$\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$	C2.	Sejam $\{A_n\}_n$ e $\{B_n\}_n$ duas seqüências de conjuntos de números naturais, tais que
16-0	C2.	
Demonstração.		para todo $n \in \mathbb{N}, A_n \subsetneq B_n$.
		para todo $n \in \mathbb{N}, A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que
	Mos	para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$
	Mos	para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$
	Mos	para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$
	Mos	para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$
	Mos	para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$
	Mos	para todo $n \in \mathbb{N}$, $A_n \subsetneq B_n$. tre que em geral $n\tilde{a}o$ podemos concluir que $\bigcap_{n=0}^{\infty} A_n \subsetneq \bigcap_{n=0}^{\infty} B_n.$

RASCUNHO

RASCUNHO