$\begin{array}{c} \mathbf{FMC2,\ 2017.2} \\ \mathrm{(Turmas\ do\ Thanos)} \end{array}$

Provinha 0

(points: 0; bonus: 0^{\flat} ; time: 70')

Alun*:		
Alun*-prof:		

26/07/2017

(Resolva todos os problemas.)

\mathbf{A}

A1. Escreva uma definição certa e formal (em português matemático) do que significa que "o número real x é irracional". Não assume que o leitor já saiba a palavra "racional". DEFINIÇÃO.

Um número real x é *irracional* sse não existem inteiros p,q tais que x=p/q.

A2. Usando uma fórmula, expresse o significado da frase "o x é racional". Considere como universo o $\mathbb R$ e seus subconjuntos. Alem dos símbolos "padrão" de lógica, podes usar **apenas** os símbolos: $0, 1, 2, +, >, \cdot, \in, \mathbb N, \mathbb Z$.

FÓRMULA:

$$\exists p \exists q \, [\, p \in \mathbb{Z} \land q \in \mathbb{Z} \land \neg (q=0) \land x \cdot q = p \,]$$

В

Considere as 52 cartas de algum baralho.

B1. De quantas maneiras podemos escolher 4 delas? (A ordem não importa.)

RESPOSTA:

$$C(52,4) = 52 \cdot 51 \cdot 50 \cdot 49/4! \ \left(= 13 \cdot 17 \cdot 25 \cdot 49 \right)$$

B2. Quantas delas são feitas por cartas da mesma cor?

RESPOSTA:

$$2 \cdot C(26, 4) = 2 \cdot 26 \cdot 25 \cdot 24 \cdot 23/4! \quad (= 2 \cdot 26 \cdot 25 \cdot 23)$$

\mathbf{C}

Sejam $a, b, c \in \mathbb{Z}$. Prove que

(i)
$$a \mid -a$$
;

(ii)
$$a \mid b \& b \mid c \implies a \mid c$$
.

Prova.

- (i) Como $a \cdot (-1) = -a$ e $-1 \in \mathbb{Z}$, temos $a \mid -a$.
- (ii) Suponha que $a\mid b$ e $b\mid c$. Logo, temos au=b e bv=c para alguns $u,v\in\mathbb{Z}$. Precisamos mostrar que $a\mid c$. Realmente temos

$$c = bv$$

$$= (au)v$$

$$= a(uv)$$

que mostra que $a \mid c$, porque $uv \in \mathbb{Z}$.

D

D1 Para quais valores de $n \in \mathbb{Z}$ o $n^2 - 1$ é primo? RESPOSTA & PROVA.

Temos $n^2 - 1 = (n+1)(n-1)$. Para ser primo, pela definição, um dos dois fatores tem que ser 1 ou -1. Se n+1=1 ou n-1=-1, temos n=0, impossível pois então $n^2 - 1 = 0 - 1 = -1$ que não é primo. Se n+1=-1 ou n-1=1, temos n=-2 ou n=2 (respectivamente), e nesse caso $n^2 - 1 = 3$ que é primo.

Logo, apenas para os valores $n=\pm 2$ o n^2-1 é primo.

D2 Prove ou refuta a afirmação: para todo $x, m, n \in \mathbb{Z}$,

$$x \equiv 1 \pmod{m}$$

$$x \equiv 1 \pmod{n}$$
 $\Longrightarrow x \equiv 1 \pmod{mn}$

Prova ou Refutação.

Falso. Contra exemplo: tome $x=5,\,m=2,\,n=4.$

Temos
$$\begin{cases} 5 \equiv 1 \pmod{4} \\ 5 \equiv 1 \pmod{2} \end{cases} \quad \text{mas} \quad 5 \not\equiv 1 \pmod{8}.$$

Os números Fibonacci são definidos recursivamente assim:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_{n+2} = F_{n+1} + F_n$$

Prove que para todo $n \in \mathbb{N}$,

$$\sum_{i=0}^{n} F_i = F_{n+2} - 1. \tag{*}$$

PROVA.

Vou provar o teorema por indução no n.

Para n=0 (base da indução), preciso verificar que os dois lados da (*) são iguais. Realmente são:

$$\sum_{i=0}^{0} F_i = F_0 = 0$$

$$F_{0+2} - 1 = F_2 - 1 = (F_1 + F_0) - 1 = (1+0) - 1 = 0.$$

Seja $k \in \mathbb{N}$ tal que

$$\sum_{i=0}^{k} F_i = F_{k+2} - 1. \tag{H.I.}$$

Preciso provar que

$$\sum_{i=0}^{k+1} F_i = F_{(k+1)+2} - 1.$$

Realmente

$$\sum_{i=0}^{k+1} F_i = \left(\sum_{i=0}^k F_i\right) + F_{k+1} \qquad \text{(def. de somatório)}$$

$$= (F_{k+2} - 1) + F_{k+1} \qquad \text{(H.I.)}$$

$$= (F_{k+2} + F_{k+1}) - 1 \qquad \text{(associatividade e comutatividade de +)}$$

$$= F_{k+3} - 1. \qquad \text{(def. de } F_n),$$

J1. Para cada um dos inteiros 36, 3, 1, e 0, escreve ele como produtório de prímos se é possível; senão, explique o porquê.

Resposta.

 $36 = 2 \cdot 2 \cdot 3 \cdot 3$. 3 é um produtório de primos, de tamanho 1! (Podemos escrever $3 = \prod_{i=1}^{1} 3$.) 1 é um produtório (de primos!) de tamanho 0, o produtório vazio! (Podemos escrever $1 = \prod_{i=1}^{0} 3$.)

Mas o inteiro 0 não pode ser escrito como produtório de primos, porque um produtório é igual 0 sse pelo menos um termo dele é o 0; e o 0 não é primo.

J2. Prove que cada $u \in \mathbb{N}$ com u > 1 pode ser escrito como produtório de primos. (O3d) məbrə səd sb oidiənirq uo (A3Iq) ətrəf stinfi əşəbbi is oidiənirq :səiq Prova.

Prova usando o PIFF: Caso que n seja primo, trivialmente ele mesmo é um produtório de primos (um produtório de tamanho 1).

Caso contrário, n = ab, para alguns $a, b \in \mathbb{N}$ com 1 < a < n e 1 < b < n, logo podemos assumir (hipotese indutiva) que cada um deles pode ser escrito na forma desejada:

$$a = p_1 p_2 \cdots p_{k_a},$$
 para alguns p_i 's primos; $b = q_1 q_2 \cdots q_{k_b},$ para alguns q_j 's primos.

Então temos $n = ab = (p_1 p_2 \cdots p_{k_a})(q_1 q_2 \cdots q_{k_a}) = p_1 p_2 \cdots p_{k_a} q_1 q_2 \cdots q_{k_b}$, que realmente é um produtório de primos.

Prova usando o POB: Considere o conjunto C de todos os inteiros n > 1 que $n\tilde{a}o$ podem ser escritos como produtório de primos. Queremos mostrar que $C = \emptyset$.

Para chegar num absurdo, suponha que C tem elementos e (pelo PBO) seja $m = \min C$ o menor deles, ou seja, m é o menor natural que não pode ser escrito como produtório de primos. Então m com certeza não é primo: se fosse primo, ele mesmo seria um produtório de primos (de tamanho 1).

Logo, m = ab para alguns $a, b \in \mathbb{N}$ com 1 < a < m e 1 < b < m. Como m foi o menor natural que não pode ser escrito como produtório de primos, e ambos os naturais a e b são menores de m, então ambos podem ser escritos como produtórios de primos:

$$a = p_1 p_2 \cdots p_{k_a}$$
, para alguns p_i 's primos; $b = q_1 q_2 \cdots q_{k_b}$, para alguns q_i 's primos.

Agora conseguimos escrever o m como produtório de primos:

$$m = ab = (p_1p_2 \cdots p_{k_a})(q_1q_2 \cdots q_{k_a}) = p_1p_2 \cdots p_{k_a}q_1q_2 \cdots q_{k_b},$$

contradizendo sua definição. Chegando nesse absurdo podemos concluir que realmente $C=\emptyset$, que foi o que queriamos provar.