(Turmas T56+N12 do Thanos)

#### Prova 4

(points: 156/100; bonus:  $0^{\flat}$ ; time:  $120^{\circ}$ )

Nome:

#### 30/06/2017

### Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).<sup>1</sup>
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V.  $\forall x (\text{Colar}(x) \rightarrow \neg \text{Passar}(x, \text{FMC2})).^2$
- VI. Use caneta para tuas respostas.
- VII. Responda dentro das caixas indicadas.
- VIII. Escreva teu nome em cada folha de rascunho extra, antes de usá-la.
  - IX. Entregue todas as folhas de rascunho extra, juntas com tua prova.
  - X. Nenhuma prova será aceita depois do fim do tempo.
  - XI. Os pontos bônus serão considerados apenas para quem conseguir passar sem.<sup>3</sup>
- XII. Escolha até 3 dos A, B, C, D para resolver.<sup>4</sup>

#### XIII. Para quem já passou FMC2:

Seja p o número dos teus pontos desta prova.

Então  $(p-100) \vee 0$  pontos serão distribuidos nas tuas três notas existentes.

#### Para quem não passou FMC2:

A nota desta prova vai substituir tua pior das provas existentes.

## Boas provas!

<sup>&</sup>lt;sup>1</sup>Ou seja, desligue antes da prova.

<sup>&</sup>lt;sup>2</sup>Se essa regra não faz sentido, melhor desistir desde já.

<sup>&</sup>lt;sup>3</sup>Por exemplo, 25 pontos bonus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

<sup>&</sup>lt;sup>4</sup>Provas com respostas em mais que o permitido não serão corrigidas (tirarão 0 pontos).

# Axiomas ZF

Extensionality.

$$\forall a \forall b \, (a = b \leftrightarrow \forall x (x \in a \leftrightarrow x \in b))$$
 (ZF1)

Emptyset.

$$\exists e \forall x (x \notin e)$$
 (ZF2)

Pairset.

$$\forall a \forall b \exists s \forall x (x \in s \leftrightarrow (x = a \lor x = b))$$
 (ZF3)

Separation (schema).

Para cada formula  $\varphi(x)$  o seguinte:

$$\forall w \exists s \forall x (x \in s \leftrightarrow (x \in w \land \varphi(x))) \quad (ZF4)$$

Powerset.

$$\forall a \exists s \forall x \, (x \in s \leftrightarrow x \subseteq a) \tag{ZF5}$$

Unionset.

$$\forall a \exists s \forall x (x \in s \leftrightarrow \exists d (x \in d \land d \in a)) \quad (ZF6)$$

Infinity.

$$\exists i (\emptyset \in i \land \forall x (x \in i \to x \cup \{x\} \in i)) \quad (ZF7)$$

Replacement (schema).

Para cada class-function  $\Phi(x)$  o seguinte: Para todo conjunto a, a classe

$$\{\Phi(x) \mid x \in a\} \tag{ZF8}$$

é um conjunto.

Foundation.

$$(\forall a \neq \emptyset)(\exists d \in a)[d \cap a = \emptyset] \tag{ZF9}$$

#### Lembre-se:

**Definição 1.** Um conjunto estruturado  $\mathfrak{G} = \langle G ; e, * \rangle$  é um grupo sse:

$$(\forall a, b \in G) [a * b \in G] \tag{G0}$$

$$(\forall a, b, c \in G) \left[ a * (b * c) = (a * b) * c \right] \tag{G1}$$

$$(\forall a \in G) [e * a = a = a * e]$$
(G2)

$$(\forall a \in G) (\exists a' \in G) [a' * a = e = a * a']$$
(G3)

Denotamos o inverso de  $a \in G$  garantido pela (G3) com  $a^{-1}$  ou (-a), dependendo se usamos notação multiplicativa ou aditiva para o grupo.

**Definição 2.** Um subgrupo  $N \leq G$  é subgrupo normal de G sse

$$N \leq G \overset{\text{def}}{\iff}$$
 para todo  $g \in G$  e  $n \in N, \ gng^{-1} \in N$   $\overset{\text{def}}{\iff}$  para todo  $g \in G, \ gN = Ng$ 

**Definição 3.** Um poset não vazio  $\mathcal{L} = \langle L ; \leq \rangle$  é um reticulado sse para todo  $x, y \in L$  existem os  $x \vee y$  e  $x \wedge y$ , onde

$$x \lor y \stackrel{\text{def}}{=} \sup \{x, y\}$$
  $x \land y \stackrel{\text{def}}{=} \inf \{x, y\}$ 

**Definição 4.** Um poset não vazio  $\mathcal{L} = \langle L ; \leq \rangle$  é um reticulado completo sse  $\bigvee S$  e  $\bigwedge S$  existem para todo  $S \subseteq L$ .

| (52)  | Δ |
|-------|---|
| (1)21 |   |

Seja  $\langle P ; \leq \rangle$  um poset. Denotamos com  $P^{\partial}$  o poset  $\langle P ; \geq \rangle$ .

(12) **A1.** Defina um  $\varphi : \mathcal{O}(P) \cong \mathcal{O}(P^{\partial})$ . DEFINIÇÃO.

(16) **A2.** Defina um  $\psi: \mathcal{O}(P_1 \uplus P_2) \cong \mathcal{O}(P_1) \times \mathcal{O}(P_2)$ . DEFINIÇÃO.

| -   |  |
|-----|--|
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
| - 1 |  |
|     |  |
| - 1 |  |

(24) **A3.** O que podes concluir sobre os ordinais  $\alpha$  e  $\beta$  se...:

(i) 
$$\omega + \alpha = \omega$$

(iii) 
$$\omega \cdot \alpha = \omega$$

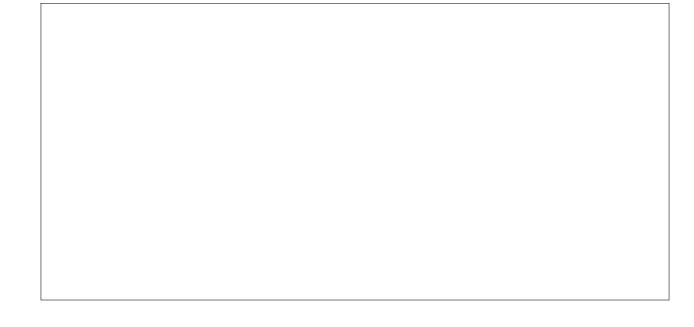
(v) 
$$\alpha + \beta = \omega$$

(ii) 
$$\alpha + \omega = \omega$$

(iv) 
$$\alpha \cdot \omega = \omega$$

(vi) 
$$\alpha \cdot \beta = \omega$$

Conclusões.



|       | _ |
|-------|---|
|       |   |
| (E9)  |   |
| (1)21 |   |

(24) **B1.** Prove que não existe uma cadeia infinita  $\in$ -descendente

$$x_0 \ni x_1 \ni x_2 \ni \cdots \ni x_n \ni x_{n+1} \ni \cdots$$

| PROVA. |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

(28) **B2.** Mostre que podemos tirar o Pairset (ZF3) da ZF "sem perder nada". Ou seja, dado objetos a, b, mostre que existe o conjunto  $\{a, b\}$  que consiste em exatamente esses objetos. PROVA.



| (52) | $\mathbf{C}$                                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
|      | Um $A \subseteq \mathbb{N}$ é cofinito sse $\mathbb{N} \setminus A$ é finito.                                                           |
| (12) | C1. Mostre que a família $\mathcal{L}_1 := \{A \subseteq \mathbb{N} \mid A \text{ \'e cofinito}\}$ é um reticulado de conjuntos. PROVA. |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
| (16) | <b>C2.</b> Mostre que a família $\mathcal{L}_2 := \{A \subseteq \mathbb{N} \mid A \text{ \'e finito ou cofinito}\}$ também é. Prova.    |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |
|      |                                                                                                                                         |

| Prova. | nem $\mathscr{L}_1$ nem $\mathscr{L}_2$ | sao complete | Jis. |  |
|--------|-----------------------------------------|--------------|------|--|
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |
|        |                                         |              |      |  |

| E | <b>D1.</b> Se $H \leq G$ de indice 2, então $H \subseteq G$ . PROVA.       |
|---|----------------------------------------------------------------------------|
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   | <b>D2.</b> Se $H \leq G$ e $N \leq G$ , então $H \cap N \leq H$ .          |
|   | PROVA. $Se H \subseteq G e W \subseteq G$ , ental $H \cap W \subseteq H$ . |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |
|   |                                                                            |

| ejam $a, b \in G$ . Prove que:                   |                                                                   |
|--------------------------------------------------|-------------------------------------------------------------------|
| (i) $a \in H, b \in H \implies a \sim b$         | (iii) $a \not\in H \ b \not\in H \longrightarrow a \rightarrow b$ |
|                                                  | (iii) $a \notin H, b \notin H \implies a \sim b$                  |
| (ii) $a \in H, b \notin H \implies a \not\sim b$ | (iv) $a \notin H, b \notin H \implies a \nsim b$                  |
| PROVAS.                                          |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |
|                                                  |                                                                   |