Prova IDMb.2

(Turma M56 do Thanos) (points: 76; bonus: 0^{\flat} ; time: 52')

Nome:

2023-12-18

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).¹
- IV. Nenhuma comunicação de qualquer forma.
- V. $(\forall x) [\operatorname{Colar}(x) \Longrightarrow \neg \operatorname{Passar}(x, \operatorname{FMC1})]^2$

- VI. Responda dentro das caixas indicadas.
- VII. Os pontos bônus são considerados apenas para quem consegue ser aprovado sem eles e tem pelo menos 50 pontos na mesma unidade. São transferíveis para outras unidades com pelo menos 50 pontos também.³
- VIII. Escolha até 2 dos A, B, D.⁴

Esclarecimentos.

Estamos usando os reais \mathbb{R} com o axioma da completude:

 $(\forall A : \mathsf{Set} \; \mathsf{Real})[A \; \mathsf{habitado} \; \& \; A \; \mathsf{cotado} \; \mathsf{por} \; \mathsf{cima} \implies A \; \mathsf{possui} \; \mathsf{supremum}]. \quad (R-\mathsf{Compl})$

Suas respostas precisam ser escritas na linguagem "(mid+)-level" que temos elaborado.

Em todos os problemas, podes usar os teoremas que demonstramos na primeira parte do IDMb (pré-completude), exceto no A1. Podes usar (sem demonstrar) os (NIP), (MCT), (BW), e (CCC).

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Por exemplo, 25 pontos bonus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

⁴Provas violando essa regra (com respostas em mais problemas) não serão corrigidas (tirarão 0 pontos).

	Demonstre até uma das:		
	Demonstre a unicidade dos inversos multiplicativos.		
A3. A4.	Demonstre Seja Demonstre que \rightarrow Sejam $(a_n)_n$ MONSTRAÇÃO DA		
\mathbf{p}			
B Seia	m A B : Set Real conjuntos habitados e cotados		
Seja B1.			
Seja B1. DEM			

(52)	D				
	Seja $(a_n)_n$ tal que converge				
(20)	D1. Demonstre que limite ℓ . Demonstração.				
(19)	D2. (Meta)demonstre que apagando qualquer uma das 3 hipoteses o D1 vira indemonstrável				
(12)	RESPOSTA.				
(20)	D3. Dado o D1 , demonstre que $(a_n)_n \to \ell$. DEMONSTRAÇÃO.				

LEMMATA

ĺ			
-1			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
J			
J			
J			
J			
J			
J			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
1			
J			
	I.		