(Turma M56 do Thanos)

Prova 3.1

(points: 24; bonus: 0^{\flat} ; time: 32')

Nome:

2023-12-08

Regras:

I. Não vires esta página antes do começo da prova.

V. $(\forall x) [\text{Colar}(x) \implies \neg \text{Passar}(x, \text{FMC1})].^2$

II. Nenhuma consulta de qualquer forma.

VI. Responda dentro das caixas indicadas.

tablet, notebook, etc.).¹

III. Nenhum aparelho ligado (por exemplo: celular, VII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.

IV. Nenhuma comunicação de qualquer forma.

VIII. Escolha até 1 dos C, I.³

Suas respostas precisam ser escritas na linguagem "mid-level" que temos elaborado.

Podes usar os teoremas que demonstramos na primeira parte de IDMb.

Usamos Real para denotar um tipo cujos membros chamamos de (números) reais e onde temos os seguintes componentes primitivos:

$$0,1:\mathsf{Real} \quad (+),(\cdot):\mathsf{Real} \times \mathsf{Real} \to \mathsf{Real} \quad (-):\mathsf{Real} \to \mathsf{Real} \quad (>):\mathsf{Real} \times \mathsf{Real} \to \mathsf{Prop}.$$

Estipulamos as proposições seguintes como axiomas:

$$(\forall a, b, c) [a + (b + c) = (a + b) + c]$$
(RA-Ass)

$$(\forall a)[0+a=a=a+0] \tag{RA-Id}$$

$$(\forall a)[(-a) + a = 0 = a + (-a)]$$
 (RA-Inv)

$$(\forall a, b)[a + b = b + a] \tag{RA-Com}$$

$$(\forall a, b, c)[a \cdot (b \cdot c) = (a \cdot b) \cdot c]$$
 (RM-Ass)

$$(\forall a)[a \cdot 1 = a] \tag{RM-Id}$$

$$(\forall a \neq 0)(\exists a') [a' \cdot a = 1 = a \cdot a']$$
(RM-Inv*)

$$(\forall a, b)[a \cdot b = b \cdot a] \tag{RM-Com}$$

$$0 \neq 1$$
 (R-NTriv)

$$(\forall d, a, b)[(a + b) \cdot d = (a \cdot d) + (b \cdot d) \& d \cdot (a + b) = (d \cdot a) + (d \cdot b)]$$
 (R-Dist)

$$(\forall a, b, c)[a > b \& b > c \implies a > c]$$
 (RO-Trans)

$$(\forall a, b)$$
 [e.u.d.: $a > b$; $a = b$; $b > a$] (RO-Tri)

$$(\forall a, b, c)[a > b \implies a + c > b + c] \tag{RO-A}$$

$$(\forall a, b, c)[a > b \& c > 0 \implies ac > bc] \tag{RO-M}$$

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Provas violando essa regra (com respostas em mais problemas) não serão corrigidas (tirarão 0 pontos).

		$(a_n)_n$ cotada	$\iff (a_n)$	$_{n}$ cercada.	
Demonstra	ÇÃO.				
	re que a vericid				

			_
			1
16	1	ı١	
•	1/	١١	
Ι.	7.4	F 1	

Sejam I um intervalo de reais, $(a_n)_n$ uma seqüência de reais convergente, e ℓ o seu limite. Considere a proposição:

eventualmente $(a_n)_n \subseteq I \iff \ell \in I$.

Contraexemplo para (\Longrightarrow).	Contraexemplo para (\iff).
12. Adicione uma hipótese simples e indemonstrável, e demonstre.	teressante nos teus dados, com qual uma direção vira
DADO EXTRA:	
Dado extra: Demonstração da	

LEMMATA

RASCUNHO