Prova IRI.3

(Turma M56 do Thanos) (points: 66; bonus: 0^{\flat} ; time: 52')

Nome:

2023-12-18

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- forma e para qualquer motivo.

- VI. Responda dentro das caixas indicadas, escrevendo em forma clara e facilmente legível.
- VII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.
- IV. Nenhuma comunicação de qualquer VIII. Respeite as restrições dos problemas que têm escolha.³
- V. $(\forall x) [\operatorname{Colar}(x) \implies \neg \operatorname{Passar}(x, \operatorname{FMC1})]^2$ IX. Escolha até um dos L, T.⁴

Esclarecimento: Tuas demonstrações precisam ser escritas na linguagem mid-level que temos elaborado na disciplina.⁵ Tuas definições devem utilizar apenas a sintaxe e a notação que temos utilizado na disciplina.

Dados:

```
data Nat
                            data Maybe α
                                                                  data List α
                                                                                                             data Dir
                                                                     \text{Nil} \ : \ List \ \alpha
   0 : Nat
                               Nothing : Maybe \alpha
                                                                                                                  L : Dir
                                                                     Cons : \alpha \rightarrow \text{List } \alpha \rightarrow \text{List } \alpha \quad R : \text{Dir}
   S : Nat → Nat
                                Just
                                            : α → Maybe α
data Either \alpha \beta
                                         data LTree \alpha \beta
  Left : \alpha \rightarrow Either \alpha \beta
                                            Tip : \alpha \rightarrow LTree \alpha \beta
                                        Fork : \beta \rightarrow LTree \alpha \beta \rightarrow LTree \alpha \beta \rightarrow LTree \alpha \beta
  Right : \beta \rightarrow \text{Either } \alpha \beta
(+) : Nat → Nat → Nat
                                   (*) : Nat → Nat → Nat
                                                                               (++): List \alpha \rightarrow List \alpha \rightarrow List \alpha
m + 0
                                     m * 0
         = m
                                                     = 0
                                                                                          ++ ys = ys
m + (S n) = S (m + n)
                                     m * (S n) = m + (m * n)
                                                                               (x:xs) ++ ys = x : (xs ++ ys)
(.) : (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
(f \cdot g) x = f (g x)
                                                                                         type Path = List Dir
```

Os teoremas que demonstramos pré-listas sobre $(+), (\cdot), (^{\wedge}), (\leq)$

Boas provas!

¹Ou seja, deslique antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Respostas violando essa regra (respondendo em mais questões) tirarão 0 pontos.

⁴Provas violando essa regra (com respostas em mais problemas) não serão corrigidas (tirarão 0 pontos).

 $^{^5}N\tilde{a}o~inclua$ os Dados/Alvo nem outros rascunhos no teu texto!

(42)	$\mathbf L$		
(12)	L1. Complete as igualdades seguintes o	om algo interessante: ⁶	
	length (xs + ys) =	$\mathrm{map}\;\mathrm{id} =$	
	$\operatorname{map} f \circ \operatorname{map} g =$	$\text{filter } p \circ \text{map } f =$	
	$\operatorname{map} f (xs + ys) =$	$\operatorname{product} \circ \operatorname{map} \ (n \ ^{\wedge} \) =$	
(12)	L2. Defina recursivamente as funções: DEFINIÇÕES.	ength, map, filter, fold.	
(18)	DEMONSTRAÇÃO DA	meira coluna do L1 para demonstrar.	
			_

 $^{^6\}mathrm{DEFINI}$ ÇÃO. Chamamos algo de interessantesse Thanos acha tal algo interessante.

.1. Escreva	a regra de inferência que corresponde à indução do tipo LTree α β .
C 2. Defina o Definição.	o que precisa para o GTree _ virar um Functor. ⁷
EFINIÇÃO.	
73. Levando	o em consideração os exemplos de uso no quadro, defina recursivamente as f
	forks, tips : LTree $\alpha \beta \rightarrow Nat$
	join, meet : $(\alpha \to \alpha \to \alpha) \to LTree \ \alpha \ \alpha \to LTree \ \alpha \ \alpha \to LTree \ \alpha \ \alpha$
	balanced: LTree Nat Nat ightarrow Bool
RESPOSTA.	Não repita as tipagens na resposta!

⁷Com tipagem; e sem demonstrar as leis necessárias!

(20)	T4. Demonstre: tips = $S \circ forks$.				
	Podes considerar dados quaisquer dos teoremas da L1.				
	Demonstração.				
(12)	T5. Defina funções eval e step para o ArEx. DEFINIÇÕES.				

LEMMATA

i .		
1		
1		
1		
1		

RASCUNHO