(Turma M56 do Thanos)

Prova IRI.1

(points: 24; bonus: 0^{\flat} ; time: 42')

Nome:

2023-09-15

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).¹
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $(\forall x) [\operatorname{Colar}(x) \Longrightarrow \neg \operatorname{Passar}(x, \operatorname{FMC1})]^2$
- VI. Responda dentro das caixas indicadas, escrevendo em forma clara e facilmente legível.
- VII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.
- VIII. Respeite as restrições dos problemas que têm escolha.³

Esclarecimento: Tuas demonstrações precisam ser escritas na linguagem mid-level que temos elaborado na disciplina.⁴ Tuas definições devem utilizar apenas a sintaxe e a notação que temos utilizado na disciplina.

Dados:

data Nat

0 : Nat

S : Nat → Nat

$$(+)$$
 : Nat \rightarrow Nat

atribuímos em todas essas operações binárias associatividade (sintáctica) à direita. Atribuímos também precedências (sintácticas) de baixa para alta: $(+), (\cdot), (^{\wedge})$.

Definimos a relação (<): Nat \times Nat \rightarrow Prop pela

$$n \le m \iff (\exists k) [n+k=m].$$

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Respostas violando essa regra (respondendo em mais questões) tirarão 0 pontos.

⁴Não inclua os Dados/Alvo nem outros rascunhos no teu texto!

Defina recurs	sivamente (como temos definido nesta disciplina) uma função
	$\mathrm{compare}:Nat\toNat\toNat$
que satisfaz	a especificação:
	compare $x y = 0 \iff x = y$
	compare $x y = 1 \iff x < y$
	compare $x y = 2 \iff y < x$
	na; sem demonstrar sua corretude.)
DEFINIÇÃO.	compare: Nat o Nat o Nat
${f E}$	Demonstre exatamente uma das E1, E2.
	$(\forall u)$ [compare $a \ b = \text{compare} \ (a + u) \ (b + u)$].
E2. $(\forall a)(\forall b)$	$(\forall u)$ [compare a b = compare $(a + u)$ $(b + u)$]. $(\forall u)$ [$(a + b)u = au + bu$]. QAO DA
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$
E2. $(\forall a)(\forall b)$	$(\forall u) [(a+b)u = au + bu].$

LEMMATA

I		
I		
I		

RASCUNHO