Prova 2

(points: 120/100; bonus: 18^b; time: 100')

Nome:

23/11/2016

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).¹
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $\forall x [\text{Colar}(x) \rightarrow \neg \text{Passar}(x, \text{FMC1})].^2$
- VI. Use caneta para tuas respostas.
- VII. Escreva teu nome em cada folha de rascunho antes de usá-la.
- VIII. Entregue todas as folhas de rascunho juntas com tua prova.
 - IX. Nenhuma prova será aceita depois do fim do tempo.
 - X. Os pontos bônus duma unidade são considerados apenas para quem consiga passar sem.³

Boas provas!

¹Ou seja, deslique antes da prova.

²Se essa regra não faz sentido, melhor já desistir.

³Por exemplo, 25 pontos bonus podem aumentar uma nota final de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

(14)	\mathbf{A}	
(4)	A0. Sejam com Defina formalmente (com fórmulas de lógica) e Considere como universo o conjunto	
	DEFINIÇÕES.	
	$\stackrel{\triangle}{\Longleftrightarrow}$	
	$\stackrel{\triangle}{\Longleftrightarrow}$	
(10)	A1. Sejam $a, b, c \in \mathbb{Z}$. Considere as proposições:	
	\implies ;	(i
	\Rightarrow .	(ii
	Para cada uma, se ela é verdadeira, prova-la; se não, ache um contraexemplo. RESPOSTA.	

Prova.			

′50	$+6^{\flat}$	C
50	$+ 0^{\circ}$	

(24) **C1.** Prove que para todo $n \in \mathbb{Z}$,

PROVA.

 $(26+6^{\flat})$ C2. Seja $f:\mathbb{Z}^3\to\mathbb{Q}$ a função recursiva definida pela equação

$$f(c, x, y) = \begin{cases} & \text{se} \\ & \text{se} \end{cases}, \text{ se}$$

- (5) (i) Calcule os valores: f(3,3,8), f(25,8,9), f(-5,2,3).
- (6^{\flat}) (ii) Explique curtamente porque a f sempre termina.
- (21) (iii) Prove que para todos $c, x \in \mathbb{Z}$,

$$|f(c,x,x)|$$
.

 $\mathbf{Dica:} \ a \mid b \iff$ Resolução.

Ache um inteiro	que satisfaz a congruência:	
Ache um inteiro	que sucistas a conoración	
	=	
		lsəbilən?
Resolução.		

$(4+12^{\flat})$	${f E}$
	Seja $C \subseteq \mathbb{Z}$ um conjunto cujos elementos .
(4)	E0. Descreva formalmente (com uma fórmula de lógica) o que significa a frase:
	"os elementos do C
	FÓRMULA:
(12^{\flat})	E1. Ache uma infinidade de conjuntos infinitos
	Resolução.