
THÈSE

en vue de l’obtention du grade de

Docteur de l’Université de Lyon,
délivré par l’École Normale Supérieure de Lyon

discipline : Informatique

Laboratoire de l’Informatique du Parallélisme (LIP)

École Doctorale Infomaths

présentée et soutenue publiquement le 2 juillet 2014 par

Athanasios Tsouanas

On the Semantics of

Disjunctive Logic Programs

Directeur de thèse :

Olivier Laurent

Rapporteurs :

Guy McCusker

Dale Miller

Devant la commission d’examen formée de :

Christophe Fouqueré (président)

Ekaterina Komendantskaya

Olivier Laurent

Guy McCusker

On the Semantics of

Disjunctive Logic Programs

by Thanos Tsouanas

a PhD dissertation supervised by Olivier Laurent

To milάκι,
for tudo.

Acknowledgements

This is the acknowledgements part, where I thank and give credit to those who
I feel played a crucial and helpful rôle in all the work and research that lead
up to this thesis.1 Thus it is very easy to choose where to begin: my super-
visor, Olivier Laurent, for all his support (scientific and non-scientific alike),
his constructive guidance, and his patience, and for putting up with various
peculiarities of mine, including my night-owl sleeping patterns. It has been a
really enlightening experience working under his supervision and attending his
seminars. My work would have been tremendously harder without his input. I
had the pleasure to be part of the wonderful Plume team of the LIP lab here in
ENS de Lyon, and I would especially like to thank Alexandre Miquel for many
annoyingly intriguing discussions, and Colin Riba and Patrick Baillot for all
their help. Filippo Bonchi, Damien Pous and Fabio Zanasi have all assisted me
in times that I needed tools from their fields of expertise. Thanks also goes to
Daniel Hirschkoff for being ἀστεῖος, and for providing a lot of entertainment
with his band, among other things. Credit is definitely due to our secretariat
staff members for all their hard work and kindness; I would especially like
to thank Catherine Desplanches, Damien Séon & Sèverine Morin, for all they
have done. Outstanding technical support has been provided by Serge Torres;
thanks!

The MALOA project has funded the vast majority of my PhD studies.2 I’m
grateful to them, and glad that I met many interesting and friendly people in
their events, especially Dugald Macpherson and Zoé Chatzidakis. As dictated
by my scholarship, I had to spend some time working in different universities:
I am thankful to Luke Ong in the University of Oxford, and Dale Miller in
École Polytechnique, for giving me the chance to work in their teams, which
assisted me a lot with my research. One more reason to thank Dale, is for
many enlightening conversations, constructive feedback, and for taking the
time to thoroughly read this manuscript. The same goes for Guy McCusker
whom I had the pleasure to meet in plenty occasions. Christophe Fouqueré
and Katya Komendantskaya were also very kind to accept to be examiners in
the jury of my defense, besides my very short notice. John Power’s continuous

1Some similarities with the acknowledgements of my MSc thesis are merely a good indi-
cation of the fact that some values withstand time. Of that, and also of my laziness to come
up with new text.

2The European Community’s Seventh Framework Programme FP7/2007-2013 under
grant agreement #238381 (the Marie Curie Initial Training Network in Mathematical Logic).

v

vi

encouragement and expertise aided me tremendously multiple times that I felt
desperately stuck in my work. I owe a lot to him. Also, Paulo and Isabel Oliva
offered me priceless support; thank you both!

I’m indebted to the most influential professors I’ve had in my undergraduate
and post-graduate studies, especially to Yiannis Moschovakis whose set theory
and recursion theory courses made me realize my passion for mathematical
logic. I would also like to thank Aristides Katavolos for his brilliant mathe-
matical analysis courses, as well as Nikolaos Papaspyrou, Costas Koutras, and
Dimitrios Thilikos, who played a crucial part in my progress. Mart́ın Escardó’s
fascinating course introduced me to denotational semantics, for which I am
grateful. Panos Rondogiannis, my MSc thesis supervisor, is in fact the one to
blame for my interest in the semantics of logic programming and game seman-
tics in particular. He has always been available for discussing any problems or
doubts, each of the many times that I needed him during my PhD studies.

Assuming you don’t speak Ελληνικά, you should also thank my English
teacher, Mike Pozantzis, for being excellent at what he does; I owe him a lot.
I feel lucky to have attended the French courses of Yasmine Daâs, even though
I did a terrible job as a student—désolé!

Of course I owe a great lot to my family: Maroui, my mother, who is one of
the smartest and kindest persons I know, for all her endless love and priceless
lessons; my beloved sister, Eva, for being supportive and next to me since
a few months before I was even born; and my father, Nikos, an old school
hacker to whom I definitely owe—assuming this is a good thing—my geekiness
with computers, since he introduced me to them when I could barely speak. I
would also like to mention my brother-in-law, Spyridon Samothrakis, for many
interesting conversations, scientific or not. My girlfriend, Ramile Carvalho da
Silva, has gone through everything that I have throughout all this time that
it took to complete my thesis, and even more. It has been a blessing to know
that her love and comfort awaits for me after many stressful and disappointing
moments, and that I have her support, taking care of me and of all those things
that I seem to be incapable of dealing with on my own. Tons of hard parts
were only made manageable thanks to her smile or effort. Eu te amo! ♥

It is great to have friends one can rely upon, and with whom one can
have a great time as well. I want to thank my brother Yiannis Tzi Tselekou-
nis, Harris Chanialidis, Matoula Petrolia, Georgios Zoulou Kapetanakis, Mar-
ilou Karanika, Irini Petroula, Christos Tarantilis, Iraklis Choraitis, and Stathis
Darkorang Lytras, for their love and support. Michail Pshlos Dimakos, Panos
Tsaknias, and Alexandros Enecon Batsis have in addition provided mathemat-
ical insight and help more times than I could possibly remember; and if it
hadn’t been for Pshlos, I wouldn’t even have a BSc degree. Mary Chlouveraki
deserves to be singled out, as I feel I owe it to her, my sudden realization of
interest in pure mathematics. A brilliant person and dearest friend, probably
the only one whose advice I do not automatically ignore—and for good rea-
son. I also thank Barbara Petit and João Aidar for standing by my side in
numerous crazy occasions, and together with Rafael Padilha, Fernando Thiers,
Nikos Konstantinides, Yannis Arapis, Emı́lia Santos, Rodrigo Pereira, and Joel
Creppy, for many relaxing basketball games and fun times in general, especially
in periods of great pressure; and café for providing sufficient amounts of
much-needed, Bourganel beer. I am grateful to Tainá Lima, for keeping me
company while working on the last details of my thesis and defense, and for not

vii

letting me fall too hard when I know I would have. Myla Medina, you talked
some sense into me when I was in need of; obrigado! Settling in a bureau-
cratic place without speaking the language is a challenging and tedious task.
Christina Apostolopoulou & Florent Murat, Lionel Rieg, Jean-Marie Madiot,
and Barbara gave me invaluable help, time and time again. I’m obliged to Irina
Kalliamvakou for being a solid rock by my side for more than half of my life
so far, and for so many things that still cannot be expressed in any language I
know. Giselle Reis has been extremely kind and always offering help, even at
times that I wouldn’t even think of asking. I owe you ω!

I thank all the friendly and welcoming people in UFMG, especially Löıc
Cerf, Fernando Pereira, and Mário Alvim, and while I’m at it, the ICEx cafe-
teria for all the pães de queijo and açáı. I am also grateful to Ronaldo Silva &
Luzia Carvalho for their generous hospitality, and for offering me a welcoming
place where I could concentrate and work on my thesis while I was in Esṕırito
Santo, Brazil. The same goes for Leo Valadão and the schools Uptime Linhares
and Yázigi São Mateus. The children’s computers school on Filellinon Street,
Aghios Nikolaos, Crete, let me use their scanners and printers on a very crucial
minutes-before-the-deadline moment, getting stressed on my behalf. Thanks!

I am also indebted to Spyros Lyberis who introduced me to the world
of Unıx back in the summer of ’99, instantly changing my relationship with
computers. I have become dependant on all those computer tools that make
my life so much easier, so I feel I should definitely give credit to the Vim text
editor, Don Knuth for TEX, Theo de Raadt and all the OpenBSD developers,
Simon Peyton Jones and the entire Haskell community, xmonad and darcs, and
of course, freenode and Wikipedia.

One cannot be productive in research, if one is dead. I’m therefore also
thankful to the splendid person who shot me in the back while I was in Brazil,
for failing to kill me. I hope they have given up this hobby by now, although
I doubt it. Ramile managed to convince three police officers to get me to a
hospital—thank you all!—when they were thinking of leaving me behind, with
a bullet in my back. I’m grateful to the doctors and nurses of Roberto Silvares
hospital in São Mateus, and to the ones in Hôpital Pierre Wertheimer in Bron,
especially Dr. Eurico Freitas Olim and Dr. Cédric Barrey. I owe all these people
my (bullet-free) life.

Finally, I hail Crete—I was on decks of Cretan ferries when I began devel-
oping my own ideas on semantics for disjunctive logic programs. And if I have
forgotten to include your name while I should have, feel free to write it in the
margin below. There’s plenty of space.3

Thank you!

3Similarly, if you did not like being mentioned, take a pen and cross your name out.
Sorry.

Contents

List of Tables xiii

List of Figures xiii

I Basic material 1

1 Introduction 3
1.1 What is a logic program? . 3
1.2 Approaches to semantics . 4
1.3 Outline . 5
1.4 Contributions . 6
1.5 Related works . 6
1.6 Notation . 7

2 Logic (and) languages 9
2.1 The language L0 of propositional logic 9
2.2 The language L1 of first-order, predicate logic 9
2.3 Truth value spaces . 10
2.4 The spaces Vκ . 10

3 The syntax of logic programs 13
3.1 An informal look . 13
3.2 Terminology . 14
3.3 Four logic programming languages 17
3.4 Clean programs . 18

4 Model-theoretic declarative semantics 21
4.1 Definitions and notation . 21
4.2 LP—the least Herbrand model 22
4.3 DLP—the minimal models . 22
4.4 LPN—the well-founded model 24
4.5 DLPN—the infinite-valued minimal models 27
4.6 First-order programs vs. infinite propositional ones 28

ix

x CONTENTS

II From non-disjunctive to disjunctive semantics 31

5 An abstract framework for semantics 33
5.1 The framework . 33
5.2 Semantics of LP . 34
5.3 Semantics of DLP . 34
5.4 Semantics of LPN . 35
5.5 Semantics of DLPN . 35

6 Disjunctive operations 37
6.1 Restricting . 37
6.2 Splitting . 38
6.3 Combinations . 39
6.4 Definite instantiations and D-sections 41

7 The abstract transformation (−)∨ 43
7.1 Definitions and theory . 43
7.2 Applications and examples . 46

III Game semantics 49

8 The LPG semantics 51
8.1 Introduction to game semantics 51
8.2 The LPG game . 52
8.3 Example plays . 53
8.4 Benefit of the doubt . 54
8.5 Semantics from games . 54
8.6 Soundness and completeness . 55

9 The LPNG semantics 57
9.1 The LPNG game . 57
9.2 Example plays . 58
9.3 Game semantics . 58
9.4 Soundness and completeness . 60

10 The DLPG semantics 61
10.1 The simplified DLP game . 61
10.2 The DLPG game . 63
10.3 Plays . 68
10.4 Strategies . 75
10.5 Game semantics . 82
10.6 Soundness and completeness . 83

11 Applications of (−)∨ on game semantics 87
11.1 A different game semantics for DLP 87
11.2 An encoding of DLP to LP . 88
11.3 A first game semantics for DLPN 89

CONTENTS xi

IVAppendices 91

A Lattices and Heyting algebras 93

References 95

Index of symbols 101

General index 103

List of Tables

3.1 Summary of representative rules for each language 18

8.1 Development of game semantics for logic programming. 51

10.1 How to read believer and doubter statements. 64

List of Figures

1.1 The four logic programming languages studied in this thesis. . . . 4

10.1 Commutative diagram for Property 10.22. 77
10.2aThe penultimate believer move of projσ2

(π) is a stalling. 79
10.2bThe penultimate believer move of projσ1

(π) is a stalling. 79
10.2cOtherwise. 79

xiii

Part I

Basic material

1

Chapter 1

Introduction

1.1 What is a logic program?

No matter where one meets logic programming, or what the specific features
of the underlying language under investigation are, a logic program is always
some sort of set of rules of the form

this ← that,

read as “this holds, if that holds”, or “I can solve this, if I know how to solve
that”. Depending on what restrictions we impose on this (the head of the rule)
and that (the body), we enable or disable features of the resulting programming
language.

In its simplest form, a rule looks like this:

a ← b1 ,,, · · · ,,, bm, (LP)

where the commas on the right stand for conjunctions. The standard deno-
tational or declarative semantics for this kind of programs is provided by a
specific two-valued model, the so-called least Herbrand model. We will briefly
review this in Section 4.2, in an attempt to be self-contained; consult [vEK76]
or [Llo87] for further information. One extension is to allow negations to appear
in bodies of rules:

a ← b1 ,,, · · · ,,, bm ,,,∼c1 ,,, · · · ,,,∼ck. (LPN)

By negation, we mean negation-as-failure ([Cla78]); the semantics we have
in mind here is supplied by the many-valued well-founded model, defined
in [VGRS91]. But the extension in which we are mostly interested in this
text is the appearance of disjunctions in heads:

a1 ∨ · · · ∨ an ← b1 ,,, · · · ,,, bm. (DLP)

This enables us to express uncertainty and to derive ambiguous information.
Instead of a single least model, in this case, we use a set of minimal models
for the semantics, as defined in [Min82]; we introduce this in Section 4.3.
Disjunctive logic programs are extensively studied in [LMR92]. Finally, one
can consider both extensions simultaneously, by allowing both negations in

3

4 CHAPTER 1. INTRODUCTION

bodies and disjunctions in heads:1

a1 ∨ · · · ∨ an ← b1 ,,, · · · ,,, bm ,,,∼c1 ,,, · · · ,,,∼ck. (DLPN)

A satisfactory, infinite-valued, model-theoretic semantics for this extension was
recently defined in [CPRW07].

Unfortunately, in the logic programming literature, terminology is not as
stable as one could hope. To contribute to this dismay, we introduce in the
following figure four abbreviations that will hopefully help the reader:

∼ ∨

∼∨

LPLP

LPNLPN DLPDLP

DLPNDLPN

LP: the so-called definite logic programs
(with neither negation nor disjunctions);

DLP: disjunctive logic programs;

LPN: logic programs with negation;

DLPN: disjunctive logic programs with negation.

Figure 1.1: The four logic programming languages
studied in this thesis.

1.2 Approaches to semantics

The model-theoretic approach to semantics outlined above, is not the only one
that has proven itself worthy:

Fixpoint semantics. Frequently, to construct the model-theoretic semantics
of logic programming languages, we use an immediate consequence operator
(traditionally denoted by TP) associated with each program P, and look at its
fixpoints; see [Llo87]. In this thesis we will not concern ourselves much with the
TP operator. An excellent survey of fixpoint semantics for logic programming
is [Fit99].

Procedural or operational semantics. The actual implementation of each
of the above languages is usually given by refutation processes. Given a goal,
the system tries to disprove it by constructing a counterexample: a proof that
the program, together with the goal is an inconsistent set of rules. Traditionally,
such proofs make use of some inference rule based on resolution. This might be,
for example, SLD resolution in the case of LP, and SLI resolution for DLP. In
this work, we do not touch this operational side of semantics either;see [Apt90]
for the non-disjunctive and [LMR92] for the disjunctive cases.

Before turning to the next approach, game semantics, one should have a
clear understanding of the nature of the aforementioned methods. On one side,

1What about disjunctions in bodies, or conjunctions in heads? It is an easy exercise to
show that this does not affect the programming language in any meaningful way; it only
makes the programmer happier. See also Section 3.4.

1.3. OUTLINE 5

we have the denotational, model-theoretic semantics and their fixpoint char-
acterizations. These provide us with a notion of correctness for every possible
answer to a goal that we might give to our program. On the operational side,
the procedural semantics provide a construction of an answer to our question
(the so-called computed answer), and this answer has to be correct. Con-
versely, such a procedure is expected to be able to derive all of the answers
that the denotational semantics considers correct. We then say that the pro-
cedural semantics is sound and complete with respect to the denotational one.
In Chapter 5 we formally define an abstract framework for semantics of logic
programming languages, thus eliminating any kind of ambiguity from the term
“semantics”.

Game semantics. Here we adopt a more anthropomorphic point of view,
and treat each program as a set of rules for a game, in which two players
compete against each other with respect to the truth of a given goal. One
player, the so-called “Doubter” doubts the goal’s truthness, while the other
player, the “Believer”, believing that the goal is true, tries to defend his stance.
To get a meaningful semantics out of such games, we look at the winning
strategies of the players, and depending on their existence, we assign an actual
truth value to the goal. A game semantics may have a denotational or an
operational flavor, or lie somewhere in-between the two. In [DCLN98], for
example, they stay close to the procedural side of semantics, while the game
semantics that we investigate here are more of a denotational nature. Part III
is entirely devoted to this kind of semantics. This game-theoretic approach to
semantics is influenced by Lorenzen’s dialogue games for logic (see [Lor61]).
For an encyclopædic treatment of the use of games in logic, consult [Hod09].

Coalgebraic semantics. This is a very recent approach to semantics for
logic programming, which involves using coalgebraic methods. Logic programs
and their derivation strategies can be modelled as coalgebras on a certain cate-
gory of presheaves. We will not use coalgebraic semantics in this treatment; for
the interested reader, some works on this subject are [BM09], [KMP10], [KP11],
[KPS13], and [BZ13]; other examples of approaches that also use categorical
methods, include [CM92], [KP96], and [ALM09].

1.3 Outline

Part I introduces all the basic material that we will need for our development.
In Chapter 2 we fix a propositional language L0 on which we will build our
logic programs, we define the notion of a truth value space, and introduce the
family Vκ of such spaces. In the following two chapters we study the syntax
and the model-theoretic semantics of the four logic programming languages.

In Part II we build our toolkit to deal with disjunctive programs. First, we
introduce an abstract framework for semantics in Chapter 5 and show how the
semantics that we have seen so far can be placed under this framework. In the
next chapter we present restrictions, splittings, combinations, definite instanti-
ations, and D-sections, which are the main tools we will use when dealing with
disjunctive programs. In Chapter 7 we define an operator that acts on any
semantics of a non-disjunctive logic programming language, and transforms it

6 CHAPTER 1. INTRODUCTION

into an “analogous” semantics for the corresponding disjunctive language. We
also demonstrate its use by showing some of its applications.

Part III is devoted to game semantics. With the exception of DLPN, each
language is directly given a game semantics (LP in Chapter 8, DLP in 10, and
LPN in 9). Finally, in Chapter 11, we show some more applications of the
semantic transformation defined in Chapter 7, this time on game semantics.

1.4 Contributions

The contributions of this dissertation can be summarized as follows:

• An abstract framework for logic programming semantics is defined and all
semantic approaches that we study are placed within this framework. We
introduce the general notion of a truth value space, on which we evaluate
formulæ. As expected, the booleans form the canonical example of a
truth value space, but we need to consider much more general ones when
dealing with negation-as-failure.

• The first game semantics for LP was given in [vE86] and [DCLN98]; this
was later extended in [GRW08] for the case of LPN programs. Here a
game semantics for DLP programs is developed in full detail; we prove
that it is sound and complete with respect to the standard, minimal
model semantics of [Min82]. Even though the game itself can be seen
as an extension of the LP game, the formalization and notation we have
used is influenced by the games used in functional programming instead.2

• We define a semantic operator which transforms any given abstract se-
mantics of a non-disjunctive language to a semantics of the “correspond-
ing” disjunctive one. We exhibit the correctness of this transformation by
proving that it preserves equivalences of semantics, and we present some
applications of it, obtaining some new semantics for DLP and DLPN. In
particular, two novel semantics for infinite, propositional DLPN programs
are constructed: one model-theoretic and one game-theoretic.

1.5 Related works

Some recent treatments benefit by incorporating tools from areas such as proof
theory and linear logic into logic programming:3 the proof search is often
presented in terms of sequent calculi, formulæ are not necessarily restricted
to Horn clauses of first-order logic, linear connectives are taken into account,
etc. [MN12], [MNPS91], [AP91], and [And92], are some works along this line
of research, just to mention a few of them. What is more, games have been
used successfully in such settings as well: in [PR05] and [MS06], for example,
two different approaches for game semantics are presented in the context of
computation-as-proof-search.

A different school of negation in logic programming, namely stable model
semantics (see [GL88]) gave rise to a relatively new kind of declarative program-
ming: answer set programming , or ASP (see [Gel08]). It allows for disjunctions

2This work was published in [Tso13].
3This one, does not.

1.6. NOTATION 7

(besides negations), among other things. Unsurprisingly, a game semantics ap-
proach is being investigated as well: in [NV07], a game is briefly outlined for
programs with single-headed clauses, i.e., for the non-disjunctive fragment of
ASP.

1.6 Notation

The Greek letters φ, ψ, and ρ will stand for rules, as well as for the cor-
responding logic formulæ. Programs will usually be denoted by calligraphic
capital letters like P, Q, and R. Lowercase letters such as a, d, f , and p, will al-
ways denote atoms, while uppercase such symbols will stand for sets of atoms.
For instance, D could be the set {d1, . . . , dn} which, as you shall shortly see,
is identified with the disjunction d1 ∨ · · · ∨ dn. We will use a monospaced font
when we show their appearances in programs. We use capital “script” letters
for families or sequences of sets of atoms: D could stand for 〈D1, . . . , Dn〉,
each Di being a set of atoms

{
di1, . . . , d

i
ki

}
. The truth values true and false

are written as T and F respectively; logical equivalence as ≡.
Given a set X, its powerset is P(−), and we subscript it with n to refer

to the set of all subsets of X of cardinality n: e.g., P1(X) is the set of all
singleton-subsets of X. For the set of all finite subsets of X we use Pf(X), so
that Pf(X) =

⋃
i∈ω Pi(X).

We will work with sequences a lot; we use ε or 〈 〉 for the empty sequence, ++
for concatenation and | · | for length. We shall write sv s′ to indicate that the
sequence s is a prefix of s′, decorating it with an “e” in case s is of even length:
s ve s

′ (note that ve ⊆ v). Proper (even) prefixes will be shown as < (<e).
s�n stands for the sequence of the first n elements of s, and it is equal to the
whole sequence if |s| ≤ n. We will frequently need to extract the longest, even,
proper prefix of a sequence s; we therefore introduce the notation s− for this,
with the convention that it leaves the empty sequence unaltered: 〈 〉− , 〈 〉.
Influenced by lists in programming languages, we use :: for the cons operator:

x :: s , 〈x〉++ s.

Products of posets are equipped with the product order by default:

(s1, s2)v (s′1, s
′
2)

4⇐⇒ s1 v s′1 and s2 v s′2.

As has been just demonstrated, , and
4⇐⇒ are used to introduce the

definition of a function or symbol, while := is used to “let-bind” the variables
appearing on its left to the corresponding expressions that appear on its right
(or the other way around). Two abbreviations extensively found in texts of
mathematics and logic that we will use are “iff” for “if and only if”, and “wff”
for “well-formed formula”.

Further notational conventions will be introduced as soon as it is sensible
to do so. Thus far, we have what we need to begin.

?

Chapter 2

Logic (and) languages

2.1 The language L0 of propositional logic

In this section we describe the propositional logic language which we denote by
L0. Foremost we assume a countably infinite set At0 whose elements we denote
by a, b, c, . . . and we call atoms. We will use the binary connectives ∨, ∧, and
→, and the unary connective ∼, which is meant to stand for negation-as-failure.

A (well-formed) formula (wff) is defined inductively: every atom is a formula
(called atomic formula); and if α and β are formulæ, then so are α ∨ β, α ∧ β,
α → β, and ∼α. We might use → facing the other way, so that α ← β
denotes exactly the same formula as β → α. Furthermore, we use α↔ β as an
abbreviation for the wff (α→ β)∧ (β → α), and consider it to have the lowest
precedence among these connectives. The language L0 is the set of all wffs.

The literals of L0 are its atomic formulæ (positive literals) and their ∼-
negations (negative literals), and we use Lit0 to denote their set.

2.2 The language L1 of first-order, predicate logic

Even though we will use almost exclusively the propositional language L0, we
mention here the first-order language L1, since we will need to refer to it a
couple of times. We assume given the countable sets of: variables Var, constant
symbols Con, and function symbols Funn for any arity n > 0, which we use to
inductively define the set of terms Term: a variable is a term, a constant symbol
is a term, and if t1, . . . , tn are terms, and f ∈ Funn, then f(t1, . . . , tn) is also
a term. We also assume for every n ∈ N, a countable set of n-ary predicate
symbols Predn, which we use, in turn, to define the set of atomic formulæ At1 of
L1: for every n ∈ N, if t1, . . . , tn ∈ Term and R ∈ Predn, then R(t1, . . . , tn) ∈ At1,
and At1 contains no other elements besides these. By induction we finally define
the set L1 of wffs: an atomic formula is a wff; if α and β are wffs, and x ∈ Var,
then α ∨ β, α ∧ β, α → β, ∼α, (∃x α), and (∀x α) are also wffs. Again,
the literals are the atomic formulæ and their negations, and we denote their
set by Lit1. We will omit the subscripts and simply use At and Lit if whether
we mean the propositional case or the first-order one is either immaterial or
well-understood from the context.

9

10 CHAPTER 2. LOGIC (AND) LANGUAGES

2.3 Truth value spaces

The standard semantics of L0 is provided by Boolean logic, by mapping each
binary connective above to the corresponding boolean operation on B = {F,T}.

As it turns out, we will need more truth values to handle negation, and
therefore we will not tie ourselves to the booleans. Abstracting away the useful
properties of B that we need, we reach the following general definition:

Definition 2.1. A truth value space is a completely distributive Heyting al-
gebra with an additional unary operator ∼.1

The canonical example of a truth value space is B, in which ∼ is defined as
the classical negation that flips the two values. This space turns out to be too
poor for languages that actually use negation as failure, and so we investigate
spaces with more values in the next section.

Definition 2.2 (valuation function). Let V be a truth value space. A function
val : At→ V is called a (propositional) valuation function. We denote the set
of valuations (At→ V) by ValV , omitting the subscript if it is obvious from the
context. Any valuation function val on At is extended to a valuation over all
wffs of L0 by consulting the operations of V:

val(α ∧ β) = val(α) ∧ val(β); val(∼α) = ∼val(α);

val(α ∨ β) = val(α) ∨ val(β); val(α→ β) = val(α)⇒ val(β).

Definition 2.3 (V-tautology). Let V be a truth value space. The wff α of L0

is a V-tautology, iff v(α) = maxV for any valuation function v.

Definition 2.4 (Γ |=V α, α ≡V β). Let Γ be a set of wffs of L0 and let V
be a truth value space. We write Γ |=V α and say that the wff α is a logical
consequence of Γ in V iff (

∧
Γ) → α is a V-tautology. Two wffs α and β of

L0 are called logically equivalent in V iff α ↔ β is a V-tautology. In symbols,
α ≡V β. Whenever V is clear from the context we will omit the subscripts in
these notations.

2.4 The spaces Vκ

Even though three-valued logics have been used for many years in the study of
negation in logic programming (e.g., [VGRS91], [Fit85], and [Kun87]) we jump
directly to a family of infinite-valued logics on which we will eventually base
our semantics of negation-as-failure. We are actually dealing with refinements
of the usual three-valued logic that was originally used for the well-founded
semantics, enjoying some additional convenient properties. Spaces of this kind
were first introduced in [RW05], and further studied in [GRW08] and [Lüd11].

Definition 2.5 (The truth value spaces Vκ). Let κ ≥ ω be an ordinal number.
The structured set2

Vκ = (Vκ;∨,∧,⇒,∼)

1See Appendix A for more information about lattices and Heyting algebras.
2Here we follow the usual practice of abusing the notation by identifying the structured

set with its carrier.

2.4. THE SPACES Vκ 11

consists of an infinite number of distinct elements, which we separate into three
disjoint sets:

Fκ , {Fα | α < κ} ; U , {U} ; Tκ , {Tα | α < κ} .

We denote their union by Vκ , F ∪U ∪ T, and equip it with the total order

F0 < F1 < · · · < Fα < · · · < U < · · · < Tα < · · · < T1 < T0.

This turns Vκ into a complete bounded lattice, thus determining ∨, ∧, and⇒:

x ∨ y = max {x, y} , x ∧ y = min {x, y} , and x⇒ y =

®
T0 if x ≤ y,
y otherwise.

But for Vκ to be a valid candidate for a truth value space, it remains to define
the operator ∼:

∼x ,

Tα+1 if x = Fα,

Fα+1 if x = Tα,

U if x = U.

Unless explicitly mentioned, we will simply write V instead of Vω in case κ = ω.

Definition 2.6. Let κ be an ordinal. The mappings order : Vκ → ON and
collapse : Vκ → V1 are then defined by

order(v) ,

®
α if v ∈ {Fα,Tα} for some ordinal α < κ

κ otherwise, i.e., if v = U;

collapse(v) ,

T, if v ∈ Tκ,

F, if v ∈ Fκ,

U, otherwise.

The intuition behind these truth values is easy to explain: we identify F0

and T0 with the usual boolean values F and T, i.e., absolute truth and absolute
falsity. The ordinal in the subscript corresponds to a level of doubt that we
have, so that F1 represents a “false” value but with a little doubt, F2 one with
a little more, etc., and similarly for the “true” values. In the middle lies U,
which we use in the case that we only have doubts without any bias towards
truth or falsity: it is entirely uncertain.

Property 2.1. For any κ ≥ ω, Vκ enjoys the following properties:

(i) it is bounded;

(ii) it is a chain;

(iii) it is a distributive lattice;

(iv) it is a complete lattice;

(v) it is a Heyting algebra;

(vi) Vκ ∼= V∂κ.

Lemma 2.2. For any κ ≥ ω, Vκ is algebraic.

Proof. We have just observed that Vκ is a complete lattice (Property 2.1(iv)).
We proceed to compute the set of its compact elements K(Vκ). Let k ∈ Vκ

12 CHAPTER 2. LOGIC (AND) LANGUAGES

and S ⊆ Vκ such that k ≤
∨
S. For k to be compact, we need a finite T ⊆ S

such that k ≤
∨
T . We have four cases to consider:

Case 1: k = Fα for some non-limit ordinal α. Then S must contain at least
some element t ≥ k, so that {t} can be the T that we need, and k is compact.
Case 2: k = Fλ for some limit ordinal λ. Now, taking S = {x | x < k} we see
that k =

∨
S and therefore k cannot be a compact element.

Case 3: k = U. Similarly to Case 2, we set S = F and verify that k is not
compact.
Case 4: k = Tα for some ordinal α. Whether α is limit or not, in this case
S will always contain at least some element t ∈ Vκ \ {x ∈ Vκ | x ≤ Tα+1}, so
that t ≥ k, and setting T = {t} we see that k is compact.

We have reached the conclusion:

K(Vκ) = (F \ {Fλ | Limit(λ)}) ∪ T.

We are now in position to prove that Vκ is algebraic, i.e., for every a ∈ Vκ,

a =
∨
{k ∈ K(Vκ) | k ≤ a} .

Indeed, in the nontrivial case that a is not itself compact, it is easy to see that
it is the supremum of all the compact elements k ≤ a.

Theorem 2A. For any κ ≥ ω, Vκ is a truth value space.

Proof. As Vκ has a unary operation ∼, we only need to verify that it is a com-
pletely distributive Heyting algebra. This follows immediately by Theorem A.7,
since we already have Lemma 2.2 and Properties 2.1(iii) and (vi).

We have defined the general structure of a truth value space, and have seen that B
and Vκ are examples of such spaces. In the next two chapters we define the syntax

and model-theoretic semantics of the four logic programming languages that we will

investigate.

?

Chapter 3

The syntax of logic programs

In this chapter we describe four logic programming languages, starting with some

informal examples meant to indicate how they are used. Then we give formal mathe-

matical definitions that faciliate their study from our perspective, and introduce the

reader to some related terminology.

3.1 An informal look

The simplest language that will concern us here is LP. Heads of rules constitute
of a single atom, while bodies are conjunctions of atoms. A simple program,
for example, is the following:

P1 =

sleeps ← tired

works ← rested

eats ← rested ,,, hungry

rested ←

 .

We might use this simple program to describe the daily life of a rather dull
person who is currently rested (this is what the last rule states). We load the
program to our implementation and interact with it by asking it questions, or
queries, i.e., we ask if a proposition is true or not. The answers have to come
from a truth value space V, and in this case we use B.1 The implementation,
if correct, will answer positively (T) if and only if the query is a logical conse-
quence of the program P1. In this case we say that the query has succeeded;
otherwise, it has failed. For example, works succeeds here thanks to the second
rule, which reduces it to rested, which in turn succeeds since it is a fact (the
fourth rule). On the other hand, tired fails, because there is no evidence to
the contrary. This illustrates that by default we consider everything to be false,
unless provable otherwise. This assumption, called the closed world assump-
tion (CWA), is a very important aspect of logic programming, and it is one of

1As long as there are no negations present in the programs, using any other truth value
space V in place of B is pointless: only its B-isomorphic subset {minV,maxV} ⊆ V will end
up being used. This would not have been the case if we had allowed for “facts” of the form
a ← v for every v ∈ V, but we are not interested in this direction here. As an example of
such an approach, the reader is referred to [vE86].

13

14 CHAPTER 3. THE SYNTAX OF LOGIC PROGRAMS

the things that make it so practical as a tool for computing and dealing with
database-like information.

In many applications, it is impractical or even literally impossible to explic-
itly list negative information. Imagine, for example, that we are implementing
a program for an airline. We want to ask whether there is a flight between
two airports at a given time. Had we not followed this convention, we would
have to list, for every pair of airports (x, y), and for every possible time t, the
specific information of whether there is a flight from x to y at time t. Following
the CWA we only need to list the flights that actually take place, and assume
that if no flight is listed on a particular time, then there must indeed be no
flight at this time from x to y.

Extending LP. Even on unrealistically simple LP programs like P1, we can
easily spot some limitations of the language: (1) even though rested and tired

are meant to be related in the obvious manner, they are not; and (2) we have
no way to express ambiguous information, such as hungry ∨ thirsty.

The first shortcoming leads to LPN, which introduces the operation ∼ in
bodies of rules for negation-as-failure. We can now write the program

P2 =

sleeps ← tired

works ← ∼tired
eats ← ∼tired ,,, hungry

 ,

which describes the typical day of the same dull person, but in a more concise
way. To see how we can still conclude that works holds, we observe that
according to the second rule, it reduces to the (finite) failure of tired. And as
we have no information to support that tired holds, we indeed conclude that
∼tired succeeds and therefore so does works.

The second shortcoming of LP leads to DLP, which relaxes the restriction
that the heads can only contain a single atom, by allowing a disjunction of
atoms to appear instead. This gives us the flexibility to reason with indefinite
information. Consider, the following example:

P3 =

mathematician ← topologist

mathematician ← algebraist

algebraist ∨ topologist ←

 .

In this program, we do not have concrete evidence of whether we are dealing
with an algebraist or a topologist, but the third rule states as a matter of fact
that (at least) one of the two must hold. Therefore, even though neither the
first nor the second rule by themselves are enough to deduce that we are in fact
dealing with a mathematician, in this disjunctive setting of DLP programs, we
are able to deduce that this is indeed the case.

Naturally, we may allow both extensions simultaneously, and doing so we
obtain DLPN which allows both ∼ in bodies and ∨ in heads, and it is the most
general language that will concern us here.

3.2 Terminology

To make it explicit that we refer to the set-theoretic interpretation when we
speak of a disjunction or a conjunction, we will use the prefix “L.P.” as shown in

3.2. TERMINOLOGY 15

the following definition, which formally introduces this and related terminology:

Definition 3.1. An L.P. disjunction is a finite subset D ⊆ Lit. An L.P. con-
junction is a finite sequence D of L.P. disjunctions. For obvious reasons we
omit the “L.P.” prefix whenever no confusion arises. A clause is a pair (H,D),
in which the head H = {a1, . . . , an} is an L.P. disjunction, and the body
D = 〈D1, . . . , Dm〉 is an L.P. conjunction. If the head of a clause is non-empty
we call it a rule, while if it is empty and m = 1, a goal.2 A fact is a bodiless
clause. In logic programs, rules will be written as

a1 ∨ · · · ∨ an︸ ︷︷ ︸
head

← `11 ∨ · · · ∨ `1s1 ,,, · · · ,,, `
m
1 ∨ · · · ∨ `msm︸ ︷︷ ︸

body

.

Such a rule is called disjunctive (also proper) if n > 1; it is clean, if sj = 1 for
all 1 ≤ j ≤ m. Therefore, a clean rule looks like this:

a1 ∨ · · · ∨ an ← `1 ,,, · · · ,,, `m.

A clean program is a countable set of clean rules; it is disjunctive (also proper),
if at least one of its rules is. Note that we have not specified what the atoms in
At really are. One may consider them to simply be propositional variables with-
out any further structure, just like in propositional calculus. In this case, we
have a propositional program. Another possibility is to let them be the atomic
formulæ of a first-order language, built by its predicates, function symbols,
variables, and constants. We then call it a first-order program.

I Example 3.1. Consider the following sets of rules:

P :=

p ← a

p ← b

a ∨ b ←

 , Q :=

®
e ∨ p ← f ∨ g ,,, h
p ∨ q ← g ,,, e ∨ r

´
, R :=

®
d ← f ∨ h
p ← g ∨ e

´
.

The program P is disjunctive and clean, Q is also disjunctive but not clean,
and R is neither of the two. J

I Example 3.2. Here is a first-order logic program:

daughter(X,Y) ← child(X,Y) ,,, female(X)

spouse(X,Y) ← married(X,Y) ,,, female(X)

married(X,Y) ← married(Y,X)

child(eva,maroui) ∨ married(sam, eva) ←
female(eva) ←
male(sam) ←

.

It is disjunctive and clean. J

2We have imposed the restriction m = 1 for goals. This will simplify the development
without any significant loss: to deal with a goal like ← D1 ,,, · · · ,,, Dm, one can simply add the
rule w ← D1 ,,, · · · ,,, Dm to the program, where w is a suitable fresh atom, and query w instead.

16 CHAPTER 3. THE SYNTAX OF LOGIC PROGRAMS

Definition 3.2 (Ground). If a term, an atom, or a formula, ρ or a set of for-
mulæ P of a first-order language L1 contains no variables, it is called ground.3

If it does, then by replacing all of its variables with ground terms we obtain a
ground instance of it. We also define:

ground(ρ) , {ρ′ | ρ′ is a ground instance of ρ}

ground(P) ,
⋃
{ground(φ) | φ ∈ P} .

I Example 3.3. Consider the first-order program E in the language that con-
tains a constant symbol 0, a unary function symbol S, and the unary predicate
symbol even:

E :=

®
even(0) ←

even(S(S(X))) ← even(X)

´
.

We compute:

ground(E) :=

even(0) ←
even(S2(0)) ← even(0)

even(S3(0)) ← even(S(0))

even(S4(0)) ← even(S2(0))

...

.

J

@ Remark 3.1 (logic programs and logic formulæ). We have seen that there is
an obvious correspondence between logic programs and rules on the one hand
and logic formulæ on the other. This allows us to directly use some well-known
jargon of mathematical logic: we speak of models, theories, consistency, logical
consequences, etc. We should not be too eager to jump to conclusions, how-
ever. One of the common pitfalls is to think that the ∼ of logic programming
corresponds to the ¬ of mathematical logic. In fact, the very reason we have
chosen to use a different symbol for negation-as-failure, is to keep in mind that
this is not the case.

Set-theoretic translations. Given any language of logic L, we will identify
a set of L-literals with the L-wff of their disjunction. Note that under this
convention, we will identify some actually distinct formulæ, e.g., a∨b and b∨a;
this poses no threat as such formulæ are already equivalent up to commutativity
and/or associativity of ∨. Similarly, sequences of sets of literals, when regarded
as logic formulæ, are identified with conjunctions of disjunctions of literals.
Notice that under this convention they are actually formulæ in conjunctive
normal form (CNF). It is also convenient to consider rules of the form α← β
as pairs (α, β). Thus, we have a mapping from the world of logic to the language
of set theory, which is a very convenient tool for our development.

I Example 3.4. The set {a, b, c} is understood to stand for the disjunction
a∨ b∨ c, the sequence 〈{a} , {b, c}〉 for the conjunction a∧ (b∨ c), and the pair
({p, q} , 〈{a, b} , {b, c}〉) for the implication ((a ∨ b) ∧ (b ∨ c))→ p ∨ q. J

3See [LMR92, Ch. 2] for more details on first-order languages.

3.3. FOUR LOGIC PROGRAMMING LANGUAGES 17

Since a program is itself a set of rules, programs can also be translated in
the same manner:

I Example 3.5. Consider the program
p ∨ q ← a ,,, b ∨ t

r ← ∼a ,,, t
t ←

 .

Translating it into set-theoretic terms, we end up with the following set of
pairs:

{({p, q} , 〈{a} , {b, t}〉), ({r} , 〈{∼a} , {t}〉), ({t} , 〈 〉)} . J

Definition 3.3. A logic programming language L is determined by:

• HL, the set of heads of rules of L;

• BL, the set of bodies of rules of L;

• QL, the set of queries, or goal clauses of L.

We define the set of rules of L as RL , HL × BL. A program of L is a
set of rules of L. We write PL for the set of programs of L. In most logic
programming languages, the bodies of rules are required to be conjunctions,
in which case we denote by CL the set of all possible conjuncts out of which
bodies are formed; in symbols,

φ ∈ BL
4⇐⇒ φ =

∧
C, for some finite sequence C ∈ C?

L.

Definition 3.4. On the set of rules RL of a language L we define two operators
head and body as the projections

head((H,B)) , H,

body((H,B)) , B.

3.3 Four logic programming languages

To formally define the languages we are interested in, we need to specify for
each one of them its determining sets: its heads, its body-conjuncts, and its
queries. Here they are:

HLP , P1(At) HDLP , Pf(At)

CLP , P1(At) CDLP , Pf(At)

QLP , P1(At) QDLP , Pf(At)

HLPN , P1(At) HDLPN , Pf(At)

CLPN , P1(Lit) CDLPN , Pf(Lit)

QLPN , P1(Lit) QDLPN , Pf(Lit).

Notice that for all of the languages above, the sets CL and QL coincide.

18 CHAPTER 3. THE SYNTAX OF LOGIC PROGRAMS

Table 3.1: Summary of representative rules for each language

p ← a ,,, b LP

p ∨ q ← a ,,, b cDLP

p ∨ q ← a ,,, b ∨ c DLP

p ← ∼a ,,, b LPN

p ∨ q ← ∼a ,,, b cDLPN

p ∨ q ← ∼a ,,, b ∨ c DLPN

I Example 3.6. Here are some sample programs written in these languages:

P1 =

p ← a

p ← b

b ←

 ∈ PLP P3 =

a ∨ b ←

p ← a

p ← b

 ∈ PDLP

P2 =

p ←
r ← ∼p
s ← ∼q

 ∈ PLPN P4 =

p ∨ q ∨ r ←

p ← ∼q
q ← ∼r
r ← ∼p

 ∈ PDLPN J

3.4 Clean programs

We use cDLP to denote the language of clean DLP programs, which is deter-
mined by:

HcDLP , Pf(At) HcDLPN , Pf(At)

CcDLP , P1(At) CcDLPN , P1(Lit)

QcDLP , P1(At) QcDLPN , P1(Lit).

Notice that PcDLP ⊆ PDLP.
Following [LMR92, §2.3], a disjunctive clause is the universal closure of a

logic formula like
L1 ∨ · · · ∨ Lk,

where the Li’s are literals. Separating them into positive and negative, and
omitting the quantifiers, this clause can be brought to the form

a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bm,

or, equivalently (by De Morgan) to

a1 ∨ · · · ∨ an ∨ ¬ (b1 ∧ · · · ∧ bm),

which, in turn, is logically equivalent to the (reverse) implication

a1 ∨ · · · ∨ an ← b1 ∧ · · · ∧ bm.

We generally adopt this as the logic programming notation of a clause, writing
commas instead of ∧. Coming this way, it is impossible for a disjunction to

3.4. CLEAN PROGRAMS 19

appear in the body of a rule. Here though, we bypass this construction as it is
often more natural to express ideas using “unclean” rules.

When we are working with clean programs, we can consider disjunctions in
bodies as “syntactic sugar”, thanks to the following transformation:

Definition 3.5 (P̂ and φ̂). Let P be a logic program. Then P̂ is the program
that results if we replace every unclean rule φ = (H, 〈D1, . . . , Dn〉) of P by all
clean rules in

φ̂ , {(H,C) | C ∈ D1 × · · · ×Dn} .

We call P̂ the clean version of P. It follows that if P ∈ PDLP and Q ∈ PDLPN,
then P̂ ∈ PcDLP and Q̂ ∈ PcDLPN.

This is a simple case of the most general Lloyd–Topor transformation, which
transforms logic programs containing arbitrary formulæ in their bodies into
normal ones. See [LT84], [Llo87, Ch. 4] or [LMR92, pp. 188–189] for more
details.

I Example 3.7. Here is the desugaring of a program Q ∈ PDLP:

Q :=

®
e ∨ p ← f ∨ g ,,, h
p ∨ q ← g ,,, e ∨ r

´
∈ PDLP ˆ7−→ Q̂ :=

e ∨ p ← f ,,, h

e ∨ p ← g ,,, h

p ∨ q ← g ,,, e

p ∨ q ← g ,,, r

 ∈ PcDLP.

J

Once we have examined the semantics of logic programs in the next chapter,
the following property will become apparent:

Property 3.1. Let P be a logic program. P̂ is clean and equivalent to P.

Almost all of the fundamental program constructions that we investigate
preserve “cleanliness”; the one time that it really makes a difference is in Sec-
tion 10.6: there, we prove soundness and completeness for cDLP programs
first, and then proceed to consider the general case of DLP.

We have explained what we mean by “logic program”, and we have defined the syntax

of four main logic programming languages. A study of their semantics comes next.

?

Chapter 4

Model-theoretic
declarative semantics

In this chapter, we define the declarative (or denotational) semantics for the logic

programming languages we are interested in:1 We start with the least Herbrand

model semantics for LP programs; then we proceed to present the minimal model

semantics of Minker (see [Min82] or [LMR92]) which is the de facto denotational

semantics for DLP programs. We are by no means thorough in this chapter but the

interested reader will find pointers for further studying of the semantics presented in

each section.

4.1 Definitions and notation

Definition 4.1. Given a propositional logic program P, we define its Herbrand
base HB(P) to be the set of all atoms that appear in P.

Definition 4.2. Let V be a truth value space. By a Herbrand V-interpretation
I of P, we mean any assignment of truth values to the elements of the Herbrand
base, i.e., any function I : HB(P)→ V. Thanks to the structure of V, such a
function I can be extended to all wffs generated from HB(P) with the logical
connectives in {∨,∧,→,∼} in the straightforward, respectful manner, just like
we did in Definition 2.2. We will use the same symbol I for the extended
function. When the truth value space V is B or when it is obvious from the
context, we may omit the prefix “V-”. We say that I satisfies a rule H ← B,
if I(B → H) = maxV. A Herbrand interpretation that satisfies every rule of
P is called a Herbrand model of P.

Definition 4.3. It is customary in the logic programming literature to identify
interpretations with sets of atoms when the truth value space is B: for any
interpretation I : HB(P)→ B, we write

a ∈ I 4⇐⇒ I(a) = T.

1We use the terms “denotational semantics” and “declarative semantics” interchangeably.

21

22 CHAPTER 4. MODEL-THEORETIC DECLARATIVE SEMANTICS

Influenced by this, in any truth value space V, we may use ∅ to denote the
interpretation I : HB(P)→ V defined by:

I(x) = minV, for all x ∈ HB(P),

i.e., the bottom element ⊥ of the poset (HB(P) → V), equipped with the
pointwise ordering.

4.2 LP—the least Herbrand model

For LP programs, B will be the truth value space. LP programs enjoy the
following very useful property:

Model intersection property. The intersection of a non-empty family of
models is itself a model.

Observe now that for any program P at least one satisfying Herbrand inter-
pretation exists; to wit, the Herbrand base itself (i.e., the interpretation that
assigns the truth value T to every element of the Herbrand base). Therefore
the family of all Herbrand models HM(P) is always non-empty, which allows
us to define the least Herbrand model as the intersection of this family:

LHM(P) ,
⋂

HM(P).

Definition 4.4 (Least Herbrand model semantics). Let P be an LP program.
The goal ← p succeeds if p ∈ LHM(P).

The following result, due to van Emden and Kowalski, justifies the use of
LHM(P) as the denotational semantics of P.

Theorem 4A. Let P be an LP program. Then

LHM(P) = {p ∈ HB(P) | p is a logical consequence of P} .

Proof. See [vEK76, §5] or [Llo87, Theorem 6.2].

This concludes our brief summary of LP semantics; consult [Llo87] for more
information.

4.3 DLP—the minimal models

We summarize the minimal model semantics of disjunctive logic programming,
using the following DLP program as a driving example:

P :=

p ← a

p ← b

a ∨ b ←

 .

First, we compute its Herbrand models:

{a, p} , {b, p} , {a, b, p} .

4.3. DLP—THE MINIMAL MODELS 23

If we try to follow the practice of LP, we will want to select the ⊆-least Her-
brand model to provide semantics for P. But none of them is least! The model
intersection property which LP programs enjoy, fails to hold in the presence of
disjunctions: ⋂

HM(P) =
⋂
{{a, p} , {b, p} , {a, b, p}} = {p} .

And {p} is not a model, since according to the third rule of our program, at
least one of the atoms a or b must be true. However, the first two models are
⊆-minimal. In fact, we can rely on the set {{a, p} , {b, p}} of minimal models
to obtain a meaningful semantics for P.

Let P be a DLP program. We write MM(P) for the set of all ⊆-minimal
Herbrand models of P. By the definition that follows, MM(P) provides the
denotational semantics for the DLP program P, which we call the minimal
model semantics à la Minker.

Definition 4.5 (Minimal model semantics). Let P be a DLP program. The
goal ← G succeeds if G is true in every minimal Herbrand model of P.

The equivalent of Theorem 4A for the disjunctive case is due to Minker:

Theorem 4B. Let P be a DLP program. A clause C is a logical consequence
of P iff C is true in every minimal Herbrand model of P.

Proof. See [Min82] or [LMR92, Theorem 3.3].

I Example 4.1. Consider the DLP program

Q :=

p ← a

p ← b

b ← c

a ∨ c ←

 ,

compute its Herbrand models, and identify the ones that are minimal:

HM(Q) =
¶
{a, p}, {a, b, p} , {c, b, p}, {a, b, c, p}

©
,

MM(Q) = {{a, p} , {c, b, p}} .

Under the minimal model semantics, p and a ∨ c are both T, as

{a, p} |= p

{c, b, p} |= p
and

{a, p} |= a ∨ c
{c, b, p} |= a ∨ c,

while both a and b ∨ c are F because of

{c, b, p} 6|= a and {a, p} 6|= b ∨ c. J

@ Remark 4.1. In [LMR92], another denotational semantics for DLP is de-
fined, which they call the least model-state semantics. However, they prove
that the two approaches are equivalent, so we stick with the minimal model
semantics here.

We have thus given meaning to disjunctive programs. It is time to do so
for ones with negation.

24 CHAPTER 4. MODEL-THEORETIC DECLARATIVE SEMANTICS

4.4 LPN—the well-founded model

As we have already mentioned, interpreting negation in logic programs is a
rather controversial subject. Certainly, negation-as-failure (see [Cla78]) is the
computational interpretation with the most fruitful applications, and no other
interpretation will concern us here. But even if we focus only on negation-as-
failure, formally giving semantics to it is neither trivial, nor a problem with
a unique satisfying solution. It is fair, however, to state that there have been
two dominant and widely accepted, model-theoretic solutions: the stable model
semantics, and the well-founded model semantics.

Negation-as-failure. Given a logic programming system, the main idea be-
hind this approach to negation is that a goal← ∼p should succeed, in case the
goal ← p terminates with failure. For example, given the program

P =

p ←
q ← ∼p
r ← ∼q

 ,

the query ← q terminates with failure (because the goal ← p terminates with
success), which in turn means that the query ← r succeeds. This is an opera-
tionally simple to explain idea, but defining declarative semantics for it proved
to be a difficult problem; see [AB94] for a survey of the various attempts.

The stable model semantics. This solution was proposed in [GL88], and
assigns to each program P a certain set of well-behaved models, called stable
models. A program may have zero, one, or more such models, which is in
this approach the price to pay in order to support negation. This semantics is
compatible with the least Herbrand model semantics of LP, in the sense that
if negations do not appear in P, then there is only one stable model: the least
Herbrand model of P. This school of programming eventually lead to what is
now known as answer set programming (ASP), which deviated from traditional
logic programming practices and its theory and applications lie beyond this
thesis; consult [Gel08] for further information.

The well-founded semantics. This semantics was introduced in [VGRS91],
and actually assigns to each program P a unique model, called well-founded.
But there is a different price to pay here: the underlying logic is shifted from
two-valued, to many-valued. The original formulation was made using a three-
valued logic, which contained an additional truth value, U, representing the
unknown truth value. This approach is also compatible with the least Her-
brand model semantics, since lack of negations in P implies that no element
of its well-founded model will have the truth value U, and this two-valued
model is indeed the least Herbrand model of P. Many years after its appear-
ance, an infinite-valued refinement of the well-founded semantics was presented
in [RW05]. There is still one truth value representing the unknown, but the
truth values T and F representing “true” and “false” respectively are each re-
placed by infinitely many truth values: we will use the Vκ spaces for this. From
this new semantics, we can obtain the original well-founded model by collaps-
ing all “false” values to F and all “true” values to T. It is indeed a refinement

4.4. LPN—THE WELL-FOUNDED MODEL 25

of the well-founded model, and in the sequel, we will refer to it simply as “the
well-founded semantics”.

The well-founded semantics of LPN

The truth value space we will use for LPN is Vκ. For finite programs it will
suffice to consider κ := ω, while for the general, infinite case, we will set κ := ω1.
We introduce the following concise notation:

Definition 4.6. let f : X → Y be a function and let y ∈ Y . Then

f || y , f−1({y}).

Definition 4.7. Let I and J be two Vκ-interpretations of a program P, and
let α ∈ κ. We write

I =α J
4⇐⇒ for all λ ≤ α, I || Tλ = J || Tλ and I || Fλ = J || Fλ

I vα J
4⇐⇒ I || Tα ⊆ J || Tα, I || Fα ⊇ J || Fα, and for all λ < α, I =λ J

I <α J
4⇐⇒ I vα J and I 6=α J.

We also define:

I <κ J
4⇐⇒ for some α ∈ κ, I <α J

I vκ J
4⇐⇒ I = J or I <κ J.

The following proposition justifies the choice of notation:

Proposition 4.1. On the set of Vκ-interpretations

(i) for any α ∈ κ, =α is an equivalence relation.

(ii) for any α ∈ κ, vα is a preorder (i.e., it is reflexive and transitive);

(iii) vκ is a partial order (i.e., reflexive, transitive, and antisymmetric).

Proof. (i) is trivial. (ii) Reflexivity is immediate from the definition, while
transitivity follows directly from the transitivities of ⊆ and =α. (iii) Reflexivity
and antisymmetry are also immediate. For transitivity, assume that I <κ J
and J <κ K, so that there are ordinals α and β such that I <α J and J <β K.
If α = β, the result follows from the transitivity of <α. Otherwise assume
without loss of generality that α < β, so that I <α J =α K, which implies
that I <α K. By the definition, this means that I <κ K, as we wanted.

Next, we define a very useful operator acting on interpretations of programs:

Definition 4.8. Let P be an LPN program and let I be an interpretation.
The operator TP is defined by:

TP(I)(p) , max {I(B) | ({p} ,B) ∈ P} .

We call TP the immediate consequence operator of P.

26 CHAPTER 4. MODEL-THEORETIC DECLARATIVE SEMANTICS

Given an LPN program P, its well-founded model WFMκ(P) is constructed
in stages, and it is best described by using TP: 2 we will approximate WFMκ(P)
by interpretations, starting with the least element ⊥ of them all, i.e., the in-
terpretation ∅ which is the constant function with value F0. We repeatedly
iterate TP until the set of atoms with value F0 and the set of atoms with value
T0 have both stabilized, i.e., after, say, m iterations, we have

TmP (I) || F0 = Tm+1
P (I) || F0 and TmP (I) || T0 = Tm+1

P (I) || T0.

Once this happens, we get our next interpretation by keeping the values of
these atoms the same, while resetting all other atoms to the “next” false value,
in this case F1. We proceed in a similar way until the sets of atoms with values
F1 and T1 have both stabilized as well, and reset the remaining atoms to the
value F2. Atoms that do not get a value by following this procedure are set to
be U. Let us see how this procedure works for a concrete example, taken from
[RW05]:

I Example 4.2. Consider the LPN program

P =

p ← ∼q
q ← ∼r
s ← p

s ← ∼s

We start the process:

∅ = {(p,F0), (q,F0), (r,F0), (s,F0)}
TP(∅) = {(p,T1), (q,T1), (r,F0), (s,T1)}
T 2
P(∅) = {(p,F2), (q,T1), (r,F0), (s,T1)} .

At this point, the values of order 0 have been stabilized. We reset the remaining
values to F1 and continue in the same manner:

I0 = {(p,F1), (q,F1), (r,F0), (s,F1)}
TP(I0) = {(p,T2), (q,T1), (r,F0), (s,T2)}
T 2
P(I0) = {(p,F2), (q,T1), (r,F0), (s,T2)} .

Now the values of order 1 have been stabilized. Like before, we reset the
remaining values, now to F2:

I1 = {(p,F2), (q,T1), (r,F0), (s,F2)}
TP(I1) = {(p,F2), (q,T1), (r,F0), (s,T3)}
T 2
P(I1) = {(p,F2), (q,T1), (r,F0), (s,F4)} ,

and values of order 2 have been stabilized. Resetting the remaining vales to
F3, we compute:

I2 = {(p,F2), (q,T1), (r,F0), (s,F3)}
TP(I2) = {(p,F2), (q,T1), (r,F0), (s,T4)} .

2Readers familar with stratification will probably recognize the similarities.

4.5. DLPN—THE INFINITE-VALUED MINIMAL MODELS 27

Observe now that values of order 3 have disappeared completely, which means
that s cannot obtain any value of order less than ω, so we set its value to U,
finally reaching the well-founded model:

WFMκ(P) = {(p,F2), (q,T1), (r,F0), (s,U)} . J

The Vκ-valued well-founded model has the following nice property, proved
in [RW05]:

Theorem 4C. Let P be an LPN program. Then WFMκ(P) is the vκ-least
model of P.

Given WFMκ(P), it is immediate to obtain the original, three-valued well-
founded model WFM(P) as defined in [VGRS91]. The following theorem,
proven in [RW05], tells us how:

Theorem 4D. Let P be an LPN program, and let p ∈ HB(P). Then

WFM(P) = collapse ◦WFMκ(P).

4.5 DLPN—the infinite-valued minimal models

In [CPRW07], the approach studied above was extended to be applicable to
finite DLPN programs as well. We impose the same restriction as in [CPRW07]
and consider only finite programs throughout this section. This also implies
that Vω is a sufficiently large truth value space.

The shift from definite to disjunctive in the case of negation-free programs
resulted in the “compromise” of using a set of minimal models, instead of a
single least one. The price to pay is the same as we shift from LPN to DLPN
programs, although in this case, naturally, these minimal models are many-
valued. The ideas involved are rather intuitive, and so we directly jump to an
example before stating the results that we are interested in:

I Example 4.3. Consider the program

P :=

®
a ∨ b ← ∼p
b ∨ p ←

´
.

The only fact in this program will force any model M to include (b,T0) or
(p,T0). In the first case, we immediately obtain the minimal model

M1 := {(a,F0), (b,T0), (p,F0)} .

In the second case, the fact that p is T0 implies that the value of ∼p must be
F1, which in turn forces either either a or b to have a value at least as big as
F1, so we reach two more minimal models:

M2 := {(a,F1), (b,F0), (p,T0)}
and M3 := {(a,F0), (b,F1), (p,T0)} .

Therefore, the set of Vω-valued minimal models of P is

MMω(P) = {M1,M2,M3} . J

28 CHAPTER 4. MODEL-THEORETIC DECLARATIVE SEMANTICS

The following are the main results regarding this semantics:

Theorem 4E. Every DLPN program P has a non-empty, finite set of vω-
minimal, Vω-valued models MMω(P).

Proof. See [CPRW07].

It is argued in [CPRW07] that this set of minimal models captures the
intended meaning of a DLPN program, and it is implied that it indeed provides
a semantics in an analogous way to the DLP case: the value of a query G can
be obtained as the minimum of the values that G has in each of those minimal
models.

Theorem 4F. Let P be a DLPN program that contains n propositional vari-
ables in its rules, and let M be a minimal model of P. Then Range(M) ⊆ Vn.

Proof. See [CPRW07].

The main reason why we focus on this semantics for DLPN programs is
the fact that it is purely model-theoretic and it naturally extends both the
well-founded semantics of LPN and the minimal model semantics of DLP, as
the following theorem states:

Theorem 4G. Let P be a DLPN program. Then

• if P is an LPN program, MMω(P) = WFMω(P);

• if P is a DLP program, MMω(P) = MM(P).

Proof. See [CPRW07].

4.6 First-order programs vs. infinite propositional ones

Even though we focus completely on propositional logic programs, we summa-
rize below the corresponding notions of the ones we described above, for the
first-order case. They are presented in detail in [LMR92, §2.2, §2.4, §3.2]. The
reader can safely skip this section on a first reading, coming back to it only
before the very last result of Section 10.6, viz. Corollary 10.33.

Definition 4.9. The Herbrand universe of L1, HU, is the set of all ground
terms which can be formed out of the constant and function symbols of L1.
The Herbrand base of a logic program P, HB(P), is the set of all ground atoms
which can be formed using the predicate symbols that appear in P on the
ground terms of HU.

Definition 4.10. A Herbrand interpretation of L1 assigns: to each n-ary pred-
icate symbol R of Predn, an n-ary function from HUn to B; to each n-ary func-
tion symbol f ∈ Funn the function that maps the element (t1, . . . , tn) ∈ HUn to
the term f(t1, . . . , tn) ∈ Term; and to each constant symbol, itself. A Herbrand
interpretation is naturally extended to evaluate all formulæ of L1 according to
the usual truth tables. If a Herbrand interpretation I is a model of P we call
it a Herbrand model of P.

4.6. FIRST-ORDER PROGRAMS VS. INFINITE PROPOSITIONAL
ONES 29

It is not difficult to see that infinite, propositional programs are as pow-
erful as finite, first-order ones. Hence, for simplicity, we will be dealing with
propositional logic programs unless mentioned otherwise. To see how we end
up with infinite programs, start from a non-propositional, finite program P,
containing at least one function symbol, and replace each of its rules by all of
its ground instances. What you get is a countably infinite program with equiv-
alent denotational semantics. This is exactly what happens in Example 3.3
(p. 16).

I Example 4.4. Let us confine ourselves to propositional (albeit infinite) pro-
grams. Then, instead of the finite first-order program E of Example 3.3 (re-
peated here for convenience together with ground(E)), we could write, for in-
stance, the infinite propositional program E0:

E :=

®
even(0) ←

even(S(S(X))) ← even(X)

´
,

ground(E) :=

even(0) ←
even(S2(0)) ← even(0)

even(S3(0)) ← even(S(0))

even(S4(0)) ← even(S2(0))

...

, E0 :=

e0 ←
e2 ← e0

e3 ← e1

e4 ← e2

...

,

in which we have chosen a propositional variable ei for each first-order atomic
formula even(Si(0)) of ground(E). J

Notice, that since the Herbrand models of a first-order logic program P are
constructed using only ground instances of rules in P, the following property
is immediate:

Property 4.2. Let P be a first-order DLP. Then P and ground(P) have the
same minimal models:

MM(P) = MM(ground(P)).

@ Remark 4.2. As long as we are studying denotational semantics, the above
property allows us to focus on infinite, propositional programs. This is a very
common practice in the field of logic programming semantics. In fact, we
assume given an implementation of our programming language (based on some
operational semantics—which, is immaterial). We then load our finite, first-
order program P, and the implementation computes answers to our queries.
Then, a denotational semantics of the equivalent, propositional, and infinite
DLP program ground(P), provides a correctness criterion for those answers.
Thus, we avoid variables and function symbols at the cost of finiteness, but
this is a fair bargain, as no difficulties arise on the declarative side of semantics
(see also [Fit99] for a relevant discussion). In exactly the same sense, when
we are giving a fixpoint semantics, we only use the set of ground instances of
clauses in P to define TP (see [Llo87] and [LMR92]).

We have defined the syntax and the model-theoretic declarative semantics of the

logic programming languages that interest us. In the next part, we define an abstract

30 CHAPTER 4. MODEL-THEORETIC DECLARATIVE SEMANTICS

framework for semantics and develop a toolkit for dealing with disjunctive programs.

The goal is to describe an operator that acts on semantics of non-disjunctive lan-

guages, and yields a new semantics for a corresponding disjunctive language.

>

Part II

From non-disjunctive to
disjunctive semantics

31

Chapter 5

An abstract framework for
semantics

In order to study logic programming languages and their semantics, we introduce in

this chapter a formal framework of semantics and examine the four languages we have

met with respect to this framework.

5.1 The framework

Definition 5.1. Let L be a logic programming language, letM be a set whose
elements we will call meanings, and let V be a truth value space. Then, an
M-semantics for L is a function

m : PL →M;

a V-answer function for M is a function

a :M→ QL → V;

and a V-system for L is a function

s : PL → QL → V.

A pair (m,a) is simply called a semantics for L.

@ Remark 5.1. Composing a V-answer function forM with anM-semantics
for L we obtain a V-system for L. Therefore, a semantics (m,a) naturally
gives rise to the V-system a ◦m. In this way, we will be able to use (m,a) in
a context where a V-system is expected.

Definition 5.2 (≈). Let L be a logic programming language. We call two
semantics of L (m1,a1) and (m2,a2) equivalent iff the corresponding V-systems
are equal. In symbols,

(m1,a1) ≈ (m2,a2)
4⇐⇒ a1 ◦m1 = a2 ◦m2.

Notice that ≈ is an equivalence relation. When the context clearly hints the
intended V-answer functions under consideration, we might abuse the notation
and simply write m1 ≈m2 instead.

33

34 CHAPTER 5. AN ABSTRACT FRAMEWORK FOR SEMANTICS

Definition 5.3. Let L be a logic programming language. We say that (m1,a1)
refines (m2,a2) with respect to the operator C iff:

(m1,a1) CC (m2,a2)
4⇐⇒

mi : PL →Mi

ai : Mi → QL → V
C : M1 →M2

m2 = C ◦m1

a1 = a2 ◦ C.

If only m1, m2, a2, and C are given, we write m1 C
a2

C m2 for (m1,a2 ◦ C) CC

(m2,a2), and might even omit the superscript a2 when it is obvious or implicit
by the context.

Lemma 5.1. The following implication holds:

(m1,a1) CC (m2,a2) =⇒ (m1,a1) ≈ (m2,a2). (5.1.1)

Proof. We have a1 ◦m1 = a2 ◦ C ◦m1 = a2 ◦m2, which by the definition of ≈
is equivalent to (m1,a1) ≈ (m2,a2).

5.2 Semantics of LP

LHM: the least Herbrand model semantics

This is the least Herbrand model semantics we met in Section 4.2.

• VLHM , B.

• MLHM is the set of all possible Herbrand interpretations.

• mLHM maps an LP program to its least Herbrand model.

• aLHM(M)(p) ,

®
T, if p ∈M
F, otherwise.

5.3 Semantics of DLP

MM: the minimal model semantics

This is the minimal models semantics of Section 4.3.

• VMM , B.

• MMM consists of all sets of Herbrand interpretations.

• mMM maps a DLP program to the set of its minimal models.

• aMM(M)(Q) ,

®
T, if Q is true in every model M ∈M

F, otherwise.

5.4. SEMANTICS OF LPN 35

5.4 Semantics of LPN

WF: the well-founded semantics

This is the well-founded model semantics for LPN, as described in Section 4.4.

• VWF , V1 = {F,U,T}.

• MWF consists of all possible Herbrand V1-interpretations.

• mWF maps every LPN program to its three-valued, well-founded model.

• aWF(M)(p) ,M(p).

WFκ: the infinite-valued well-founded semantics

This is the infinite-valued well-founded semantics for LPN, also described
in Section 4.4.

• VWFκ , Vκ.

• MWFκ consists of all possible Herbrand Vκ-interpretations of LPN pro-
grams.

• mWFκ maps every LPN program to its Vκ-valued, well-founded model.

• aWFκ(M)(p) ,M(p).

@ Remark 5.2 (The ordinal κ). The ordinal κ that we use in the truth value
spaces Vκ may vary, depending on our needs. The reader should note at this
point that if the programs are finite, an ordinal as small as ω suffices to give
us satisfying semantics, in the sense that collapsing the obtained Vω-valued
model to a three-valued one will always yield the desired well-founded model.
See [RW05] and [Lüd11] for more information.

5.5 Semantics of DLPN

MMω: the infinite-valued minimal model semantics

The infinite-valued minimal model semantics, which we introduced in Sec-
tion 4.5, and apply for finite, propositional DLPN programs.

• VMMω , Vω.

• MMMω consists of all possible Vω-valued Herbrand interpretations of
DLPN programs.

• mMMω maps every DLPN program to the set of its minimal, infinite-
valued models.

• aMMω (M)(q) ,
∧
{M(q) |M ∈M }.

?

Chapter 6

Disjunctive operations

In this chapter, we define some operations that can be applied to various disjunctive

components of logic programs, for example rules, or even whole programs. We will

extensively rely on these operations in the sequel.

6.1 Restricting

Definition 6.1 (Rule restriction). For any given rule φ and any set of atoms
A, we define the restriction of φ to A by

φ|A , (head(φ) ∩A, body(φ)) .

It follows that a rule’s body is unaffected by restriction: body(φ) = body(φ|A).

Definition 6.2 (Program restriction). Let P be a DLP or DLPN program and
let φ ∈ P. Then for any set of atoms A, we can define the restricted program
P|φA by restricting the rule φ of P to A:

P|φA , (P \ {φ}) ∪ {φ|A} .

In words, P|φA is the program which is identical to P, with the exception that
the rule φ has been replaced by φ|A.

I Example 6.1. Let P be the proper DLP program

P :=

p ∨ q ∨ r ← f ,,, g

p ∨ q ∨ r ← a ,,, c

f ←

 ,

and let φ := p ∨ q ∨ r ← a ,,, c. Here are a couple of restrictions of P with
respect to φ:

P|φ{p,q} :=

p ∨ q ∨ r ← f ,,, g

p ∨ q ← a ,,, c

f ←

 , P|φ{r} :=

p ∨ q ∨ r ← f ,,, g

r ← a ,,, c

f ←

 . J

37

38 CHAPTER 6. DISJUNCTIVE OPERATIONS

We observe the following useful property:

Property 6.1. The restriction of a rule φ is stronger than the original rule,
in the sense that any interpretation which satisfies φ|A must also satisfy φ. In
the same sense, restricting a disjunctive program makes it stronger.

6.2 Splitting

We will frequently fix a disjunction H, and break it into logically stronger, less
disjunctive parts. For this we introduce the notion of a proper partition:

Definition 6.3 (Proper partition). Suppose that H is a set of atoms. Then a
tuple H := (H1, . . . ,Hn) is a proper partition of H iff

(i) ∅ 6= Hi (H for all i;

(ii) H = H1 ∪ · · · ∪Hn;

(iii) Hi ∩Hj = ∅ for all i 6= j.

Once we know how to restrict a program, splitting it with respect to some
partition H becomes trivial:

Definition 6.4 (Splitting a program). Let φ be a proper disjunctive rule, and
let H := (H1, . . . ,Hn) be a proper partition of its head. Then the splitting of
P with respect to φ over H is the tuple

P|φH ,
Ä
P|φH1

, . . . ,P|φHn
ä
.

I Example 6.2. The pair
Ä
P|φ{p,q},P|

φ
{r}

ä
of Example 6.1 is the splitting of P

with respect to φ over H := ({p, q} , {r}). J

To prove the main result of Chapter 10 we need the following lemma, which
relates the models of a splitting of a program with those of the original program.

Lemma 6.2 (Inclusions). Let (P1,P2) be the splitting of a DLP program P

with respect to φ over (H1, H2). Then

MM(P) ⊆ MM(P1) ∪MM(P2) ⊆ HM(P).

Proof. Let φ1 := φ|H1
and φ2 := φ|H2

. For the first inclusion, let S ∈ MM(P),
and suppose S /∈ MM(P1). We need S ∈ MM(P2). There are two ways in
which S can fail to be in MM(P1): either it is a model but not a minimal one,
or it is not even a model to begin with.
Case 1: S is a non-minimal model of P1. There exists then, a proper sub-
model S0 (S of P1, with S0 |= P1. By definition and Property 6.1, this would
also be a model of P, and therefore S would not be minimal in P, which is a
contradiction, and so this case may never be.
Case 2: S is not a model of P1.

S ∈ MM(P) =⇒ S ∈ HM(P)

=⇒ S |= ψ for all ψ ∈ P

=⇒ S |= ψ for all ψ ∈ P1 \ {φ1} (P1 \ {φ1} ⊂ P)

=⇒ S 6|= φ1 (by case hypothesis)

6.3. COMBINATIONS 39

Since (φ1, φ2) is the splitting of φ over (H1, H2), S is forced to satisfy φ2, and
therefore satisfies every element of P2, so that S ∈ HM(P2).

It remains to show that it is minimal in P2. But if it was not, we would
arrive at the same contradiction as in case 1; therefore, S ∈ MM(P2). We have
proved the inclusion

MM(P) ⊆ MM(P1) ∪MM(P2). (1)

Obviously now, MM(P1) ⊆ HM(P1) and MM(P2) ⊆ HM(P2), so by taking
unions on both sides we obtain

MM(P1) ∪MM(P2) ⊆ HM(P1) ∪HM(P2). (2)

As P is a weaker program than its restrictions (by Property 6.1), we also have
the inclusions HM(P1) ⊆ HM(P) and HM(P2) ⊆ HM(P). Hence, by taking
unions for one last time,

HM(P1) ∪HM(P2) ⊆ HM(P). (3)

Putting (1)–(3) together:

MM(P) ⊆ MM(P1) ∪MM(P2) ⊆ HM(P1) ∪HM(P2) ⊆ HM(P).

@ Remark 6.1. One might be tempted to believe that some of these inclusions
are actually equalities, but none of them holds in general, as the following
example demonstrates: consider the DLP program P and its splitting

P :=

®
b ←

a ∨ b ∨ c ←

´

Ç
P1 :=

®
b ←
a ←

´
, P2 :=

®
b ←

b ∨ c ←

´å
.

Then the corresponding sets of Herbrand models and minimal models are

HM(P) = {{b}, {b, a}, {b, c}, {b, a, c}}, MM(P) = {{b}},
HM(P1) = {{a, b}}, MM(P1) = {{a, b}},
HM(P2) = {{b}, {b, c}}, MM(P2) = {{b}},

so that in this example all inclusions are proper:

MM(P) (MM(P1) ∪MM(P2) (HM(P1) ∪HM(P2) (HM(P).

6.3 Combinations

When working with a game semantics for disjunctive programs, given a se-
quence of disjunctions, we will frequently want to disjunctively combine them
into a single disjunction. In a similar fashion, we wish to combine conjunctions,
rules, and later even plays and strategies! Informally speaking, the idea is al-
ways the same: we combine two or more “disjunctive things” into a single such
thing, by using some kind of logical disjunction. Thus, the resulting combina-
tion will be “more disjunctive” than either of them. Even though we use the
same notation for all of the different kinds of disjunctive combinations, it will
always be clear what type of elements we are dealing with, and so no confusion
should arise. This overloaded notation is rather convenient and really pays off
in terms of readability.

In the definitions that follow, we introduce combination to deal with dis-
junctions, conjunctions, and rules.

40 CHAPTER 6. DISJUNCTIVE OPERATIONS

Definition 6.5 (Combination of disjunctions). The (disjunctive) combination
of two disjunctions is simply their union:

D g E , D ∪ E.

Definition 6.6 (Combination of conjunctions). Given two conjunctions of dis-
junctions D := 〈D1, . . . , Dn〉 and E := 〈E1, . . . , Em〉, their combination is an-
other conjunction of disjunctions, logically equivalent to D ∨E , and defined by
the following equation:

D g E , 〈D1 g E1, . . . , D1 g Em, . . . , Dn g E1, . . . , Dn g Em〉 .

Notice that the sequence on the right is empty iff any of D or E is empty.

I Example 6.3. Combining the following two conjunctions of disjunctions

p ,,, q ∨ r ,,, q ∨ b i.e., 〈{p} , {q, r} , {b, q}〉
a ∨ b ,,, a ∨ r i.e., 〈{a, b} , {a, r}〉

in the given order, we obtain the conjunction

p ∨ a ∨ b ,,, p ∨ a ∨ r ,,, q ∨ r ∨ a ∨ b ,,, q ∨ r ∨ a ,,, q ∨ b ∨ a ,,, q ∨ b ∨ a ∨ r,

i.e., 〈{a, b, p} , {a, p, r} , {a, b, q, r} , {a, q, r} , {a, b, q} , {a, b, q, r}〉. J

Definition 6.7 (Combination of rules). The combination of two disjunctive
rules φ1 := (H1,D1) and φ2 := (H2,D2) is the rule defined by

φ1 g φ2 , (H1 gH2,D1 gD2).

@ Remark 6.2. It follows that φ1 g φ2 will not be a clean rule in general,
unless one of the φi’s is a fact. This is the only construction that does not
preserve cleanliness. However, we will only use it to extract the head of the
combined rule (which causes no trouble),1 and not to create new, potentially
unclean rules.

I Example 6.4. Combining the following two rules

p ∨ q ← a ∨ b ,,, c i.e., ({p, q} , 〈{a, b} , {c}〉)
p ∨ r ← d ,,, e i.e., ({p, r} , 〈{d} , {e}〉)

we obtain

p ∨ q ∨ r ← a ∨ b ∨ d ,,, a ∨ b ∨ e ,,, c ∨ d ,,, c ∨ e,

i.e., ({p, q, r} , 〈{a, b, d} , {a, b, e} , {c, d} , {c, e}〉). J

Hitherto we have defined combination for pairs of disjunctions, conjunc-
tions, and rules. We can generalize these definitions from pairs to sequences in
a straightforward way:

1Notice that head(φ1 g φ2) = head(φ1) g head(φ2).

6.4. DEFINITE INSTANTIATIONS AND D-SECTIONS 41

Definition 6.8 (Combining sequences). Given a sequence 〈T1, . . . , Tn〉 of com-
binable disjunctions, conjunctions, or rules, we set

[〈T1, . . . , Tn〉] , T1 g · · ·g Tn,

where g is understood to associate to the left, and ∅, 〈∅〉, or (∅, 〈∅〉) is its unit,
depending on whether we are combining disjunctions, conjunctions, or rules
respectively.

An alternative presentation of the same definition uses recursion:

[〈 〉] ,

∅ (disjunctions)

〈∅〉 (conjunctions of disjunctions)

(∅, 〈∅〉) (disjunctive rules)

[〈T1, . . . , Tn+1〉] , [〈T1, . . . , Tn〉]g Tn+1.

6.4 Definite instantiations and D-sections

First we need to define the definite instantiations of a disjunctive program D.
Informally, a definite instantiation of D is what we get by replacing each head
of D by one of its elements. Formally, we define:

Definition 6.9. Let φ = (H,B) be a disjunctive rule. If h ∈ H, then the
definite rule (h,B) is a definite instantiation of φ. D(φ) is the set of all definite
instantiations of φ.

I Example 6.5. Here are some disjunctive rules and their respective sets of
definite instantiations:

φ1 := a ∨ b ← p ,,,∼q D(φ1) =

ß
a ← p ,,,∼q
b ← p ,,,∼q

™
,

φ2 := e ∨ f ∨ g ← D(φ2) =

 e ←
f ←
g ←

 ,

φ3 := p ∨ q ← a ,,, b ∨ c D(φ3) =

ß
p ∨ q ← a ,,, b ∨ c
p ∨ q ← a ,,, b ∨ c

™
. J

Definition 6.10. Let D = {(Hi,Bi)}i∈I be a disjunctive program, indexed
by some set of indices I. A D-section is any choice function f ∈

∏
i∈I Hi.

We write S(D) for the set of all D-sections. If f is a D-section, we define the
definite instantiation of D under f to be the definite program

Df , {({f(i)} , Bi)}i∈I .

We call P a definite instantiation of D, if there is a D-section f such that
P = Df . Finally, we write D(D) for the set of all definite instantiations of D.

I Example 6.6. Consider the disjunctive program

D :=

φ1 := s ∨ t ← p ,,, b ∨ c
φ2 := a ∨ b ←
φ3 := p ← a

φ4 := p ← b

φ5 := b ∨ c ←

.

42 CHAPTER 6. DISJUNCTIVE OPERATIONS

There are 8 D-sections in total, and 8 definite instantiations of D. Let f, g ∈
S(D) be the following two of them:

f := {(1, t), (2, a), (3, p), (4, p), (5, b)}
g := {(1, s), (2, b), (3, p), (4, p), (5, b)} .

From these two D-sections we obtain two elements of the D(D) set:

Df =

t ← p ,,, b ∨ c
a ←
p ← a

p ← b

b ←

and Dg =

s ← p ,,, b ∨ c
b ←
p ← a

p ← b

b ←

.

Notice that f and Df correspond to the choices that appear circled on the
program D above. J

This completes our toolkit that will aid us in manipulating disjunctive programs. It is

now time to put these tools into use: in the next chapter, we show how we can extend

any semantics of a definite language into a semantics of a corresponding disjunctive

language, and in Part III we will also use them extensively to define a novel game

semantics for DLP and prove its soundness and correctness.

?

Chapter 7

The abstract transformation (−)∨

In this chapter we define the (−)∨ operator, which transforms any given semantics of a

non-disjunctive logic programming language into a semantics for the “corresponding”

disjunctive one. For reasons of simplicity, we will assume that all programs in this

chapter are clean. This does not really impose any substantial restriction: for an

unclean program D, we simply use the semantics of its equivalent, clean version D̂

(see Definition 3.5).

7.1 Definitions and theory

Definition 7.1 ((−)∨). The operator (−)∨ is an overloaded operator that can
be applied to:

(1) M-meanings of LP[N] programs:

if m : PLP[N] →M,

then (m)∨ : PDLP[N] → P(M),

is defined by (m)∨(D) ,m(D(D)).

(2) V-answers of LP[N] programs:

if a : M→ QLP[N] → V,
then (a)∨ : P(M)→ QDLP[N] → V,

is defined by (a)∨(S)(Q) ,
∧

S∈S

∨
q∈Q

a(S)(q).

(3) V-systems of LP[N] programs:

if s : PLP[N] → QLP[N] → V,
then (s)∨ : PDLP[N] → QDLP[N] → V,

is defined by (s)∨(D)(Q) ,
∧

P∈D(D)

∨
q∈Q

s(P)(q).

The following theorem justifies the definitions above, and is the driving idea
behind them.

43

44 CHAPTER 7. THE ABSTRACT TRANSFORMATION (−)∨

Theorem 7A. Let V be a truth value space, D a DLP program, G a DLP goal,
and I a V-interpratation for D. Then

I
Ä∧

D→
∨
G
ä

=
∧

P∈D(D)

∨
g∈G

I
Ä∧

P→ g
ä
.

Proof. Pick a set of indices J to index D, and denote its rules byRj , each having
a headHj and a body Bj , so that D := {Rj | j ∈ J} = {Hj ← Bj | j ∈ J}. Now
compute:

I
Ä∧

D→
∨
G
ä

= I
(∧

j∈J
Rj →

∨
g∈G

g
)

(1)

= I
(∧

j∈J
Rj

)
⇒ I

(∨
g∈G

g
)

(*)

=
∧

j∈J
I(Rj)⇒

∨
g∈G

I(g) (*)

=
∧

j∈J
I(Hj ← Bj)⇒

∨
g∈G

I(g) (2)

=
∧

j∈J
I

Å∨
h∈Hj

h← Bj

ã
⇒
∨

g∈G
I(g) (3)

=
∧

j∈J

ï
I

Å∨
h∈Hj

h

ã
⇐ I(Bj)

ò
⇒
∨

g∈G
I(g) (*)

=
∧

j∈J

ï∨
h∈Hj

I(h)⇐ I(Bj)

ò
⇒
∨

g∈G
I(g) (*)

=
∧

j∈J

∨
h∈Hj

[I(h)⇐ I(Bj)]⇒
∨

g∈G
I(g) (4)

=
∨

f∈S(D)

∧
j∈J

(
I(f(j))⇐ I(Bj)

)
⇒
∨

g∈G
I(g) (5)

=
∧

f∈S(D)

[∧
j∈J

(
I(f(j))⇐ I(Bj)

)
⇒
∨

g∈G
I(g)

]
(6)

=
∧

f∈S(D)

[∧
j∈J

I(f(j)← Bj)⇒
∨

g∈G
I(g)

]
(*)

=
∧

f∈S(D)

[
I
(∧

j∈J
(f(j)← Bj)

)
⇒
∨

g∈G
I(g)

]
(*)

=
∧

f∈S(D)

∨
g∈G

[
I
(∧

j∈J
(f(j)← Bj)

)
⇒ I(g)

]
(7)

=
∧

f∈S(D)

∨
g∈G

î
I
Ä∧

Df

ä
⇒ I(g)

ó
(8)

=
∧

P∈D(D)

∨
g∈G

î
I
Ä∧

P
ä
⇒ I(g)

ó
(9)

=
∧

P∈D(D)

∨
g∈G

I
Ä∧

P→ g
ä

(*)

where each step of the computation is justified as follows: (1) by assumption
for D and G; (2) by assumption for Rj ; (3) by assumption for Hj ; (4) by
Property A.9(III); (5) by the fact that V, as a truth value space, is completely
distributive, and by the definition of S(D); (6) by Property A.9(IV); (7) by
Property A.9(III) again; (8) by the definiton of Df ; (9) by the definitions of
S(D), D(D), and Df ; and all steps marked by (*) follow from the fact that I
is a V-interpretation.

@ Remark 7.1. Note that given a set of wffs A, thanks to the idempotence,
commutativity and associativity of ∨ and ∧, the various ways of forming a wff

7.1. DEFINITIONS AND THEORY 45

from the sets
∨
A and

∧
A will lead to equal truth values when an interpretation

acts on them. We have just made use of this on the proof above.

Lemma 7.1. Let L be LP or LPN. Suppose that M is some set of meanings
for L and V a truth value space. Let m and a be an M-semantics and a
V-answer function for L respectively. Then

(a ◦m)∨ = (a)∨ ◦ (m)∨;

or, following Remark 5.1, (m,a)∨ = ((m)∨, (a)∨). It follows that if (m1,a1)
and (m2,a2) are two semantics for L, then

(m1,a1) ≈ (m2,a2) =⇒ (m1,a1)∨ ≈ (m2,a2)∨. (7.1.1)

Proof. We compute:

((a)∨ ◦ (m)∨) (D)(Q) = ((a)∨((m)∨(D))) (Q)

=
∧

M∈(m)∨(D)

∨
q∈Q

a(M)(q) (def. of (a)∨)

=
∧

M∈m(D(D))

∨
q∈Q

a(M)(q) (def. of (m)∨)

=
∧

P∈D(D)

∨
q∈Q

a(m(P))(q)

=
∧

P∈D(D)

∨
q∈Q

(a ◦m)(P)(q)

= (a ◦m)∨(D)(Q). (def. of (s)∨)

Lemma 7.2. Let V be a totally ordered, truth value space, and let D be a clean
DLP (or DLPN) program. If M is a model of D, then there is an LP (or LPN)
program P ∈ D(D) such that M is a model of P. In symbols,

{M |M is a model of D} ⊆ {M |M is a model of P for some P ∈ D(D)} .

Proof. Let us index the rules of D by some index set J , so that we have
D = {Rj | j ∈ J} where for each j, Rj := Hj ← Bj . Now let M be a model of
D. Therefore, M satisfies every rule Rj of D, i.e.,

for every j ∈ J , M(Hj) ≥V M(Bj).

Since Hj is a finite set of atoms, and since V is totally ordered, we have

M(Hj) =
∨
{M(h) | h ∈ Hj} = max {M(h) | h ∈ Hj} = M(hj),

where hj is an element of Hj for which the above equality holds. Picking
for each j ∈ J such an hj , we obtain a D-section and correspondingly the
definite instantiation P = {hj ← Bj | j ∈ J} ∈ D(D). We observe that since
M(hj) = M(Hj) ≥V M(Bj), M satisfies every rule of P; in other words, M is
a model of P, which is what we wanted to show.

As the following counterexample confirms, the above lemma fails to hold in
general if we drop the condition that the truth value space has to be totally
ordered:

46 CHAPTER 7. THE ABSTRACT TRANSFORMATION (−)∨

I Counterexample 7.1. Consider the truth value space V := P({0, 1}) ordered
under ⊆, whose elements we will denote by writing >, L, R, and ⊥, for {0, 1},
{0}, {1}, and ∅ respectively. For the DLP program D := {a ∨ b ← }, we
compute

D(D) = {Pa,Pb} , where
Pa := {a ← }
Pb := {b ← } .

Here is a model M of D that is neither a model of Pa, nor of Pb:

M := {(a, L), (b,R)} .

In fact, M(a∨b) = M(a)∨M(b) = L∨R = >, but M(a) = L < > and similarly
M(b) = R < >. J

7.2 Applications and examples

As promised, we investigate the application of the (−)∨ operator on the se-
mantics of the non-disjunctive languages that interest us and investigate the
equivalences of the resulting semantics.

From LP to DLP

Let us start with the simplest case of LP programs and their least Herbrand
model semantics, LHM. As a reminder, we are dealing with VLHM = B, MLHM

is the set of all possible Herbrand interpretations, and mLHM maps an LP
program to its least Herbrand model. Finally, aLHM(M)(p) is T exactly when
p ∈M .

We first notice that using (−)∨ on LHM we obtain a semantics for DLP,
which we will denote by LHM∨. We have:

VLHM∨ = VLHM = B
MLHM∨ = P(MLHM).

We proceed following the definitions:

mLHM∨(P) = (mLHM)∨(P) = mLHM(D(P)),

aLHM∨(S)(Q) = (aLHM)∨(S)(Q) =
∧

S∈S

∨
q∈Q

aLHM(S)(q),

sLHM∨(D)(Q) = (sLHM)∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sLHM(P)(q).

Next we show the equivalence of this new, obtained semantics, with the
traditional, minimal model semantics MM.

Theorem 7B. The LHM∨ and the MM semantics are equivalent.

Proof. To exhibit the equivalence between the minimal model semantics MM
and the obtained semantics LHM∨, we appeal to Lemma 5.1: we define a
collector operator C : MLHM∨ →MMM by

C(M) , {M ∈M |M is ⊆-minimal in M} ,

7.2. APPLICATIONS AND EXAMPLES 47

and verify that (mLHM∨ ,aLHM∨) CC (mMM,aMM). Indeed, according to Def-
inition 5.3, this amounts to two things: (1) mMM = C ◦ mLHM∨ , and (2)
aLHM∨ = aMM ◦ C. The latter is immediate from the definitions of the three
objects involved. For the first one, observe first that C is monotone. Next,
suppose that D ∈ PDLP. Using the monotonicity of C, and Lemma 7.2 (as B
is totally ordered) we compute:

mMM(D) = C({M |M is a model of D}
⊆ C({M |M is a model of P for some P ∈ D(D)})
= C(mLHM∨(D)) = (C ◦mLHM∨)(D).

For the other direction,

mLHM∨(D) ⊆ {M |M is a model of D} ,

on which we apply the monotone C on both sides to obtain

C(mLHM∨(D)) ⊆ C ({M |M is a model of D})
= mMM(D).

Therefore, since D was arbitrary, we have mMM = C ◦mLHM∨ .

From LPN to DLPN

Similarly to the LP case, this time we describe the shift from the WFκ semantics
of LPN and obtain a new semantics for DLPN, which we denote by WFκ∨.

Remember, VWFκ = Vκ,MWFκ is the set of all possible Vκ-interpretations,
and mWFκ maps an LPN program to its least, Vκ-valued model. Finally,
aWFκ(M)(p) is the value of p in M , in other words, M(p).

We denote by WFκ∨ the semantics we obtain by using (−)∨ on WFκ. This
semantics has:

VWFκ∨ = VWFκ = Vκ
MWFκ∨ = P(MWFκ).

Just like in the case of LHM, we follow the definitions and obtain

mWFκ∨(P) = (mWFκ)∨(P) = mWFκ(D(P)),

aWFκ∨(S)(Q) = (aWFκ)∨(S)(Q) =
∧

S∈S

∨
q∈Q

aWFκ(S)(q),

sWFκ∨(D)(Q) = (sWFκ)∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sWFκ(P)(q).

Remember that MMκ is defined only for finite programs, for which ω is
a big enough ordinal. Therefore the obtained semantics WFκ∨ is in fact more
general than MMκ as it appears in the literature, since WFκ∨ gives meaning to
any DLPN program, finite or not. Yet, as long as we restrict ourselves to finite
programs, we have the following theorem:

Theorem 7C. The WFω∨ and the MMω semantics on finite DLPN programs,
are equivalent.

48 CHAPTER 7. THE ABSTRACT TRANSFORMATION (−)∨

Proof. We define the collector operator C : MWFω∨ →MMMω by

C(M) , {M ∈M |M is vω-minimal in M} ,

and verify that (mWFω∨ ,aWFω∨) CC (mMMω ,aMMω), so that the result will again
be a direct consequence of Lemma 5.1. The remaining of the proof is similar
to the one of Theorem 7B, except that this time we use the fact that Vω is
totally ordered.

This concludes the exposition of our “disjunctive” toolkit. In the next part we turn

to games, yet in its last chapter we will reuse the (−)∨ operator, this time on game

semantics.

>

Part III

Game semantics

49

Chapter 8

The LPG semantics

In this chapter we introduce the simplest of games that we will use, and which will

form the basis for all the remaining games. As an introduction to the subject of

game semantics for logic programs, some notions are only described informally. On

the next chapter, they will be strictly formalized.

8.1 Introduction to game semantics

Games made their debut in the logic programming scene with [vE86], where
we find the first informal description of a game in the logic programming lit-
erature. Similar games can also be found as early as [Acz77]. But it was not
until [DCLN98], that a game semantics was systematically studied for the case
of LP. It was there shown, that it is in fact sound and complete with respect to
SLD resolution. This is a rather involved game, which stays close to the pro-
cedural semantics, and therefore directly handles first-order programs, taking
into account variables, function symbols, substitutions, etc. Approximately
a decade later, this game—or, to be fair, its propositional version—was ex-
tended in [GRW08], to cover negation for finite, propositional LPN programs.
The LPN game semantics is proven to be equivalent to an infinite-valued re-
finement of the well-founded model semantics (as defined in [RW05]); it is a
denotational game semantics. A couple of years after that, two games to deal
with DLP and DLPN (again from a denotational point of view) were described
informally in [Tso10].

The history of denotational and game semantics for these four versions of
logic programming languages is summarized in Table 8.1.

Lang. Denotational semantics Game semantics
LP least Herbrand model, [vEK76] LPG, [DCLN98]
DLP minimal models, [Min82] DLPG, [Tso13]
LPN well-founded model, [VGRS91] LPNG, [GRW08]
DLPN Vκ-valued minimal models, [CPRW07] (LPNG)∨, §11.3

Table 8.1: Development of game semantics for logic programming.

51

52 CHAPTER 8. THE LPG SEMANTICS

Why games? There are various benefits of defining a correct game semantics
for each of these programming languages. On the operational side, the LP game
helps us prune down the space of SLD derivations, by grouping them together
using the much smaller space of strategies. In fact, the alpha-beta algorithm
was used in [LC00] to speed-up the resolution strategies even for the case of
constraint logic programming . On the denotational side, these games impart
elegant characterizations of these main versions of logic programming. As it
turns out, starting from LP, one only needs to add a couple of simple game-
rules to its game to arrive at DLP; the addition of a different one brings you to
LPN. These rules are fairly modular, so that it even makes sense to consider
adding all of them simultaneously to deal with DLPN—although we will choose
a different route to obtain a game semantics for DLPN in this text. Contrast
the simplicity of this approach to the difficulty of treating disjunction and
negation relying solely on model-theoretic tools. In addition, this kind of games
is also applicable to intensional logic programming (as explained in [NR12]),
and even outside of the logic programming world, e.g., to boolean grammars
(see [KNR11]).

8.2 The LPG game

The general picture, shared by all of the games that we consider here, is based
on Lorenzen dialogue games (see [Lor61]). There are two players (Player I
vs. Player II, or Opponent vs. Player) and two player rôles: doubter vs. be-
liever.1 At each round of the game, one player will be the doubter and the
other one will be the believer. In the beginning of the game, Player I is the
doubter and Player II the believer. When there is no negation present, the
players will never change rôles, and so we may also refer to them as Doubter
and Believer respectively.2

Given a program P and a goal ← p, the game is about the two players
arguing over whether the given goal should succeed or not. The player who
doubts it (Doubter) begins the game by saying:

Doubter: “Why p?”.

The defending player (Believer) must give a convincing argument of why he
thinks that p is true. He must select a program rule from P that has p as its
head and play it. For instance, selecting p ← a ,,, b ,,, c, he replies:

Believer: “p because a, b, and c.”,

to which Doubter must respond by doubting a specific conjunct from the body,
viz. a, b, or c. Selecting the second one, for example, she replies:

Doubter: “Why b?”.

1We agree to refer to Player I as a she, and to Player II as a he. There is no particular
reason for the specific choice, but keeping their genders separate makes talking about them
easier. I first encountered this convention in [Vää11], and I adopted it.

2This is not the case for the LPN game: to capture the “unknown” truth value of the
well-founded model, we need to allow ties in the game, as well as rôle-switching moves. This
is explained in Chapter 9.

8.3. EXAMPLE PLAYS 53

The game continues in this manner, until a player cannot argue anymore, in
which case they lose the game. This means that either Believer played a rule
with an empty body (i.e., a fact) or Doubter played an atom which is not the
head of any program rule. Doubter has the benefit of the doubt, which means
that if she can keep doubting forever (in case of an infinite play), she wins.
See Section 8.4 for a discussion about the reasoning behind this decision.

This conveys the essence of the games we use for logic programming; all
games we define in this text are based on the same principles. We will denote
believer moves by β and doubter moves by δ, and refer to the game just de-
scribed as the LPG game, and denote it by ΓLP

P (← p), for a given program P

and a goal clause ← p. When the game is obvious from the context we may
omit the superscript.

8.3 Example plays

I Example 8.1. Consider the program

P :=

p ← q ,,, r

q ← s

s ←
r ← t

r ←

.

With the goal ← p, three maximal plays in ΓLP
P (← p) might be the following:

π1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p

D0 : p

B0 : p ← q ,,, r

D1 : q

B1 : q ← s

D2 : s

B2 : s ←

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, π2 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p

D0 : p

B0 : p ← q ,,, r

D1 : r

B1 : r ← t

D2 : t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, π3 :=

∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p

D0 : p

B0 : p ← q ,,, r

D1 : r

B1 : r ←

∣∣∣∣∣∣∣∣∣∣∣∣
.

Conveniently enough, if we underline Doubter’s selections—as we have done in
the example above—we can condense each play by entirely omitting the lines
that correspond to her moves. For the sake of laziness, we will follow this
practice from now on. The three plays above are therefore written as:

π1 :=

∣∣∣∣∣∣∣∣∣∣
goal : ← p

B0 : p ← q ,,, r

B1 : q ← s

B2 : s ←

∣∣∣∣∣∣∣∣∣∣
, π2 :=

∣∣∣∣∣∣∣
goal : ← p

B0 : p ← q ,,, r

B1 : r ← t

∣∣∣∣∣∣∣ , π3 :=

∣∣∣∣∣∣∣
goal : ← p

B0 : p ← q ,,, r

B1 : r ←

∣∣∣∣∣∣∣ .
Plays π1 and π3 are won by Believer, who has managed to corner the doubter
by playing a fact: there are no conjuncts for her to choose from. On the other
hand, π2 is won by Doubter, who managed to doubt an atom which is not the
head of any of the rules of P, and thus Believer cannot make any move and
loses the game. J

54 CHAPTER 8. THE LPG SEMANTICS

8.4 Benefit of the doubt

Why do we give the benefit of the doubt to the doubter? The following example
illustrates how things can go wrong, in case we do not.

I Example 8.2. Consider the following program

P :=

®
a ← a ,,, b

b ←

´
and the goal ← a. A play in ΓLP

P (← a) has to begin with Doubter doubting
a, to which Believer responds with a ← a ,,, b. For as long as Doubter doubts
a, Believer always plays the same rule, and therefore plays will never end with
a winner. Had we given the benefit of the doubt to Believer, Doubter would
eventually have no choice but to switch and doubt b, at which point Believer
would win by playing the fact b ← . This describes a winning strategy for
Believer, but—this being a logic program—we most definitely do not want the
goal ← a to succeed, because of the denotational semantics:

a /∈ LHM(P) = {b} . J

Who has the benefit of the doubt is a decision similar to the closed/open
world assumptions (CWA/OWA) in knowledge representation languages. Giv-
ing it to the doubter resembles CWA, while giving it to no player resembles
OWA;3 it might be desired in some cases (e.g., description logics used for the
semantic web), but it is certainly not the stance we take in the world of logic
programming. For more information check [Rei78] and [Min82].

8.5 Semantics from games

Remember—our objective is to use games to provide denotational semantics
for logic programs; in other words, to decide which goals should succeed, i.e.,
which answers are correct.

Notice now, that the three plays π1, π2, and π3 of Example 8.1 above are
played on the same game, of the same program P, with the same goal← p. Yet
Believer wins two of them, and loses another. This shows that merely winning
or losing a particular play in a game, is not enough information to decide if
a goal should succeed or not : maybe we managed to win a play because our
opponent played badly enough, or we lost the play because we didn’t play
smartly enough. This is exactly what happened in π2, where Believer chose
the rule r ← t to justify his belief on r, thus enabling the doubter to doubt t
for which there is no rule that supports it. In π3 he makes the right move and
chooses to play the fact r ← , which immediately grants him victory.

It therefore makes no sense to determine the success of a goal by looking at
particular plays. Instead, we focus on strategies. Informally, a strategy for a
game determines what Player will play in each possible position of the game.4

If following a strategy σ Player is guaranteed to win against any possible move
of Opponent, we call σ a winning strategy for that goal.

This allows us to the define the LPG semantics:

3This would introduce strategies that are neither winning nor losing: they lead to ties.
4Formal definitions are given on the next chapter.

8.6. SOUNDNESS AND COMPLETENESS 55

Definition 8.1 (LPG semantics). Let P be an LP program. A goal ← p

succeeds, if Believer has a winning strategy in ΓLP
P (← p).

The LPG semantics under the abstract semantic framework

• VLPG , B.

• MLPG is the set of strategies based on LP programs.

• mLPG maps every LP program P to the set of strategies for the LPG game
based on P.

• aLPG(Σ)(q) ,

®
T, if there is a winning strategy σ ∈ Σ for q

F, otherwise.

8.6 Soundness and completeness

We state in this section some known results about the LP game.

Theorem 8A (Di Cosmo–Loddo–Nicolet). The LPG semantics is sound and
complete with respect to SLD resolution.

Theorem 8B (Clark). SLD resolution is sound and complete with respect to
the least Herbrand model semantics.

The first of these is proven in [DCLN98], while the second one is due to [Cla79]
(and can also be found in [Llo87, Theorems 7.1 and 8.6]). Putting the above
two theorems together, we arrive at the correctness of the LPG semantics:

Corollary 8.1 (Soundness and completeness of the LP game semantics). Let
P be an LP program, and ← p a goal. Then, there is a winning strategy in the
associated game ΓLP

P (← p) iff p belongs to the least Herbrand model of P.

Having understood the basic ideas behind the LPG game, we proceed to formally

define and study the LPNG game, which will turn out to reduce to the LPG one when

no negations are present.

?

Chapter 9

The LPNG semantics

As we have mentioned previously, to deal with negation-as-failure in the way of the

well-founded semantics, it is essential to have some unknown truth value U in the

truth value space. In the world of games, we introduce ties between the two players.

The LPNG game is formally defined for finite LPN programs, and thus all programs

in this chapter are assumed to be finite. This also has the implication that we can

limit ourselves to values in the Vω space (see Remark 5.2).

9.1 The LPNG game

The LPNG game is based on the LPG one, and indeed it reduces to it for
negation-free programs. Whereas in the LPG game, the rôles of the players
stay the same throughout the course of a play, in LPNG, a believer’s move can
sometimes be rôle-switching. For this reason, we cannot refer to the players as
“Doubter” and “Believer”, so we speak of “Opponent” and “Player” instead.

The LPNG game is played just like the LPG one, until the moment that the
doubter doubts a negated conjunct, say ∼p. Essentially we read this as:

Opponent: “Why ∼p?”,

to which Player (who is the believer) is forced to confirm that he indeed doubts
p, which turns him into the doubter, and his opponent into the believer:

Player: “Because I doubt p. Why p?”.

and the game continues, but with the rôles of the players swapped.

It is important to stress that the doubter retains the benefit of the doubt, but
there is a game-changing difference: it is no longer true that every infinite play
will be won by one of the players. In case a player has managed to “secure”
their rôle as a doubter from some certain point on, then indeed they will win
any infinite play. Otherwise, there must be an infinite number of rôle-switching
moves, and the play results in a tie.

57

58 CHAPTER 9. THE LPNG SEMANTICS

9.2 Example plays

I Example 9.1. Consider the program

P :=

p ←
q ← ∼p
r ← ∼q

 ,

We show two plays for this program; the first is played on ΓLPN
P (← q), the

second on ΓLPN
P (← r). We mark every rôle-switch by drawing a straight line

and we keep the convention of omitting the lines that correspond to doubter
moves (by simply underlying the doubts)

π1 :=

∣∣∣∣∣∣∣∣
goal : ← q

P0 : q ← ∼p

O2 : p ←

∣∣∣∣∣∣∣∣ , π2 :=

∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← r

P0 : r ← ∼q

O2 : q ← ∼p

P3 : p ←

∣∣∣∣∣∣∣∣∣∣∣∣
.

Both plays are won by believers, but in π1 the believer is Opponent, while in
π2, where there are two rôle-switching moves, Player is the believer. J

I Example 9.2. Let us now see an infamous program of LPN:

Q :=

®
p ← ∼q
q ← ∼p

´
.

Consider the infinite play

π3 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p

P0 : p ← ∼q

O2 : q ← ∼p

P3 : p ← ∼q

O5 : q ← ∼p

P6 : p ← ∼q
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here no player is able to secure the believer rôle for themselves, so this play is
won by neither of them: the outcome is a tie. J

9.3 Game semantics

To obtain the refined, infinite-valued model WFMω(P), we need to take into
account the rôle-switching moves played. For this, we will use a payoff function:

9.3. GAME SEMANTICS 59

Definition 9.1 (Payoff). Let π be a play in some game ΓLPN
P (← p). Then the

payoff functions Φω and Φ are defined by:

Φω(π) ,

Tn, if Player wins in π,

Fn, if Player loses in π,

U, otherwise,

where n is the number of rôle-switching moves played in π; and

Φ , collapse ◦ Φω,

where collapse is the “subscript-removing” function of Definition 2.6.

I Example 9.3. Consider the plays π1, π2, and π3 from the examples 9.1 and
9.2 above. Their corresponding payoffs are:

Φω(π1) = F1, Φω(π2) = T2, Φω(π3) = U. J

Definition 9.2 (Non-losing strategy). A strategy σ is non-losing iff∧
{Φω(π) | π ∈ σ} ≥ U.

@ Remark 9.1. At this point, we are really in possession of two different
games: one in which there are only three possible outcomes for each play (win,
lose, or tie); and one in which by consulting the payoff function Φω, we actually
have various degrees of winning and losing, and a single level of tie. Notice,
however, that the two games only differ in the possible outcomes; they share
the same moves, plays, and strategies.

We now proceed to directly define the LPNG and LPNGω semantics under
the framework of Chapter 5:

The LPNG semantics

• VLPNG , V1.

• MLPNG is the set of strategies based on LPN programs.

• mLPNG maps every LPN program P to the set of strategies for the LPNG
game based on P.

• Finally,

aLPNG(Σ)(q) ,

T, if there is a winning strategy in Σ for q

U, else, if there is a non-losing strategy in Σ for q

F, otherwise.

=
∨¶∧

{Φ(π) | π ∈ σ}
∣∣∣ σ is a strategy in Σ for q

©

60 CHAPTER 9. THE LPNG SEMANTICS

The LPNGω semantics

• VLPNGω , Vω.

• MLPNGω is the set of strategies based on LPN programs.

• mLPNGω maps every LPN program P to the set of strategies for the LPNG
game based on P.

• aLPNGω (Σ)(q) ,
∨
{
∧
{Φω(π) | π ∈ σ} | σ is a strategy in Σ for q}

9.4 Soundness and completeness

Soundness and completeness results for both games with respect to the corre-
sponding well-founded semantics are proven in [GRW08]. The following theo-
rem summarizes these results:

Theorem 9A (Soundness and completeness of the LPNG semantics). Let P be
an LPN program, and let Σ be the set of all strategies of LPNG games played
on P. Then,

WFM(P) = aLPNG(Σ),

WFMω(P) = aLPNGω (Σ).

We have thus presented a game semantics for LPN programs, which is sound and

complete with respect to the well-founded semantics. Next we turn our attention to

the other extention of LP programs: DLP.

?

Chapter 10

The DLPG semantics

In this chapter a game semantics for DLP is formally defined, studied, and proven
correct:

Soundness and completeness of the DLPG semantics (Theorem 10G). The
game semantics DLPG of DLP is equivalent to the minimal model semantics, i.e.,
given any DLP program P, and any disjunction D,

D is true wrt the
DLPG semantics

⇐⇒ D is true wrt the
minimal model semantics.

Two key ideas of Chapter 6 are further developed to prove the two directions of
the above result: combination (for completeness) and splitting (for both). In short, we
begin with a finite disjunctive logic program P, and split it in two new DLP programs
P1 and P2, such that they are in a sense, “less disjunctive”. Now, strategies for games
in P can themselves be split to strategies for games in P1 and P2, and vice versa:
strategies for such games can be combined to form new strategies for games in P. By
repeated splitting, we eventually arrive at programs that are not disjunctive at all (LP
programs), which we know how to deal with since [DCLN98]. Finally, compactness
will allow us to extend this result to the general case of infinite DLP programs.

Be aware, that even though the DLPG game developed here can be thought of
as another extension of the LPG game, its formalization is drastically different from
those of the games of either LP or LPN, and appears to be novel in the field of
logic programming. It has been influenced instead by game semantics in the style of
Abramsky–Jagadeesan–Malacaria and Hyland–Ong–Nickau, used for PCF and func-
tional programming in general (see [AJM00], [AM99], [HO00] and [Nic94]). Although
we assume no such prior knowledge of this field, the initiated reader should hopefully
feel at home. Let us play.

10.1 The simplified DLP game

This game extends the LPG game to deal with disjunctions. First of all, the
goal here is assumed to consist of a disjunction of atoms. The key difference
from the LPG (and LPNG) games is that in the DLPG game the believer can
play combo moves: he can use more than one rule to support his belief. What is
more, he can use not only rules from the given program, but also implicit rules,
i.e., rules of the form a ← a. Thanks to rule combination, he can disjunctively

61

62 CHAPTER 10. THE DLPG SEMANTICS

combine his selection of rules into one, say G ← D1 ,,, · · · ,,,Dn, and play it against
his opponent:

Believer: “G because D1, D2, . . . , and Dn.”;

and it is now Doubter’s turn to choose which disjunction Di to doubt:

Doubter: “Why Di?”.

And the game goes on.
To sum up, Believer is constantly challenged by Doubter to justify why he

believes some disjunction δ. He does that by g-combining a sequence of DLP
rules to form a single rule β, such that the head of β is a subset of δ. Doubter
must then select which disjunction from the body of β she doubts, and so on.
Informally, this can be further summarized thus:

DLP game = LP game + implicit rules + combo moves.

The decision to allow the believer to include implicit rules not from the
program is backed up by the following example:

I Example 10.1. Consider the DLP program

P :=

p ← a

p ← b

b ← c

a ∨ c ←

 .

For the goal ← p, two plays in this game could look like this:

π1 :=

∣∣∣∣∣∣∣∣∣∣
goal : ← p

B0 : p ← a ∨ b
B1 : a ∨ b ← a ∨ c
B2 : a ∨ c ←

∣∣∣∣∣∣∣∣∣∣
, π2 :=

∣∣∣∣∣∣∣
goal : ← p

B0 : p ← a ∨ b
B1 : b ← c

∣∣∣∣∣∣∣ .
In both plays, Believer justifies the move B0 by combining the first two program
rules. Then, in π1, he combines the program rule b ← c with the implicit rule
a ← a, while in π2, he only uses program rules. You can easily verify that
without implicit rules it is impossible for him to win this game. J

Note that in both plays of Example 10.1, since every believer move has a
body with only one element in it, Doubter does not really have any choice to
make; she is simply following the lead of Believer. Here is an example where
she can actually enjoy the game as well:

I Example 10.2. The program now is

Q :=

p ← a ,,, b

q ← a ,,, b

a ← d ,,, c

b ←
c ∨ d ← b

,

10.2. THE DLPG GAME 63

and the goal is ← p ∨ q. Here are two valid plays for this game:

π1 :=

∣∣∣∣∣∣∣
goal : ← p ∨ q
B0 : p ∨ q ← a ∨ a ,,, a ∨ b ,,, a ∨ b ,,, b ∨ b
B1 : b ←

∣∣∣∣∣∣∣ ,
won by Believer, and

π2 :=

∣∣∣∣∣∣∣
goal : ← p ∨ q
B0 : p ∨ q ← a ∨ a ,,, a ∨ b ,,, a ∨ b ,,, b ∨ b
B1 : a ← d ,,, c

∣∣∣∣∣∣∣ ,
by Doubter. J

Having seen the basic idea of the simplified game, it is time to formalize
things: we define the actual DLPG game.

10.2 The DLPG game

To study this game and prove it correct, we need to refine it substantially. To
be specific, believer moves will not be played as a single (combined) DLP rule as
was done in the simplified version. Instead, Believer will now specify the exact
sequence of rules β that he combined to create his move. Likewise, Doubter
will not select a single disjunction from the combined move of Believer; instead
she will select a sequence of occurrences: one from each body of the rules in
β—which, we stress, is now a sequence of rules. Things become clearer and
formal after the definitions and the examples that follow.

Given a DLP program P and a goal clause← G, we will define the associated
DLPG game, and denote it by ΓDLP

P (← G) or simply by ΓP(← G) when no
confusion may arise.

Just like every game that we investigate in this thesis, this is a two-player
game, with the two same player rôles: the doubter and the believer. As was
the case for the LPG game, the rôles of the players never change throughout
the game and so we will simply call the players Doubter and Believer again.

Doubter starts by doubting G, the body of the goal clause, and Believer
tries to defend it. A player who cannot play a valid move loses the game. Now
let us be precise.

Definition 10.1 (Extended program). Given any set of DLP rules P, we can
extend it to P+, which includes all meaningful implicit rules. In detail,

P+ , P ∪ {a ← a | a ∈ HB(P)} .

Definition 10.2 (Moves). A doubter move δ is a sequence of occurrences of
disjunctions in bodies of DLP clauses; we refer to these occurrences as the
doubts of δ. A believer move β from P is a finite sequence of DLP rules from
the extended set P+. Given a move m, we call [m] the statement of the move
and refer to the sequence m as the justification of the statement.1 We say that
the elements of a believer move β that belong to P constitute the proper part
of the justification; the rest, the implicit. If |β| > 1 we call β a combo move.

64 CHAPTER 10. THE DLPG SEMANTICS

The statement is read as. . .

D “Why D?” or “I doubt D.”
E ← D1 ,,, · · · ,,, Dn “E because D1, . . . , and Dn.”
E ← “E because it is a fact.”

Table 10.1: How to read believer and doubter statements.

Table 10.1 suggests how we can read moves aloud. Notice that they resemble
an actual dialogue. This motivates the following definition:

Definition 10.3 (Dialogue). A quasidialogue from P is a finite sequence

π := 〈δ0, β0, δ1, β1, . . . 〉 ,

such that:

• for all i, δi is a doubter move and βi a believer move (if they exist);

• for all i, if βi exists then head([βi]) ⊆ [δi];

• for all i > 0, if δi is 〈D1, . . . , Dk〉, and βi−1 is 〈ψ1, . . . , ψk′〉 then k = k′

and Dj ∈ body(ψj) for all 1 ≤ j ≤ k.

It is a dialogue if it also satisfies:

• for all i, if βi exists then βi ∩ P 6= ∅,

i.e., the believer always selects at least one rule from P.

@ Remark 10.1. Regarding the first restriction imposed on believer moves,
one could make the seemingly stronger demand that head([βi]) = [δi]. It
is easy to check, however, that this changes nothing in the game, since the
believer can bring up implicit rules to combine them with his move in case the
subset was proper. To see that he can still win exactly the same arguments,
remember that by definition, if there is at least one fact in a combination, the
resulting rule is also a fact.

Definition 10.4 (Play). A (quasi)play of ΓP(← G) is a (quasi)dialogue π from
P which, if non-empty, satisfies the additional property that [δ0] = G. We
denote the empty play by ε , 〈 〉.

Note that dialogues (and plays) are sequences and thus inherit the partial
orderings from v and ve.

I Example 10.3. Consider the same program Q as in Example 10.2, repeated
here for convenience:

Q :=

p ← a ,,, b

q ← a ,,, b

a ← d ,,, c

b ←
c ∨ d ← b

1[−] was introduced in Definition 6.8.

10.2. THE DLPG GAME 65

(the goal is still← p ∨ q). The two plays that follow correspond to the ones we
considered previously. Here, the statements of the believer moves that use more
than one rule are explicitly shown in parentheses merely for the convenience of
the reader; they are not part of the actual plays.

π1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p ∨ q
β0 : p ← a ,,, b

q ← a ,,, b(
[β0] : p ∨ q ← a ∨ a ,,, a ∨ b ,,, b ∨ a ,,, b ∨ b

)
β1 : b ←

∣∣∣∣∣∣∣∣∣∣∣∣∣
is (still) won by Believer, and

π2 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p ∨ q
β0 : p ← a ,,, b

q ← a ,,, b(
[β0] : p ∨ q ← a ∨ a ,,, a ∨ b ,,, b ∨ a ,,, b ∨ b

)
β1 : a ← d ,,, c

∣∣∣∣∣∣∣∣∣∣∣∣∣
by Doubter. J

Property 10.1. Any dialogue π := 〈δ0, β0, . . . 〉 from P can be considered as a
play of ΓP(← G), where G := [δ0].

@ Remark 10.2 (Disallowing stalling). We have forced the believer to always
include at least one rule from the actual program P, thus banning what we
are about to call “stalling” from our games. Still, this concept will be crucial
for our exposition: the introduction of plays in which stalling is allowed (i.e.,
quasiplays) will make a lot of the statements that follow easier to prove.

Definition 10.5 (Follow). We say that Doubter follows, if she has only one
possible valid move that she can play in response to a believer move β, i.e., if
for every rule ψ ∈ β, |body(ψ)| = 1. We denote such a follow move by β. In
symbols,

β , 〈the unique D ∈ body(ψ) | ψ ∈ β〉 .

Definition 10.6 (Stalling). We say that a Believer is stalling, if he responds
to a doubter move δ by playing the sequence of implicit rules

δ , 〈a ← a | a ∈ [δ]〉 .

In this way he is forcing the doubter to follow with δ, which has the same
doubts as δ again. Notice that despite the fact that the occurrences will be
different, the actual doubts will be the same, which is what really matters here.
Easily, stalling is a valid response to δ since head

([
δ
])

= [δ].

@ Remark 10.3 (Notation). Once more we have overloaded a symbol here,
but once more the end justifies the means: we increase readability with no
possibility of ambiguity, since the follow-bar can only be applied to believer
moves, while the stalling-bar only covers doubter moves. This also brings the

66 CHAPTER 10. THE DLPG SEMANTICS

handy double-bar notation for the only possible reply to a stalling move, in
which case the follow is always defined. In addition, it is easy to verify the
following cute, bar-cancellation properties:

δ = δ and β = β.

@ Remark 10.4. For any doubter move δ, the move δ is equal to δ modulo a
change in occurrences: it contains exactly the same doubts. Therefore, it also
shares the same statement

[δ] =
î
δ
ó
.

If we remove stallings and their corresponding follow moves from a quasidia-
logue, we obtain an actual dialogue; and similar for plays. This is exactly what
the function rmstall (defined below) does; colloquially speaking, it removes the
“quasi-”. Note that if the original quasidialogue ended with a stall move, the
resulting dialogue will be of odd length.

Definition 10.7 (rmstall). Let τ be a quasidialogue from P. We define the
function rmstall recursively by cases on ` := |τ |:
Case 1: ` ≤ 1. Then either τ = 〈 〉 or τ = 〈δ〉 for some doubter move δ. Both
alternatives contain no believer moves, and hence zero stallings; we set

rmstall(τ) , τ.

Case 2: ` = 2. Then τ := 〈δ, β〉, so we set

rmstall(τ) ,

®
〈δ〉 if β = δ,

〈δ, β〉 otherwise.

Case 3: ` ≥ 3. Then τ = 〈δ, β, δ′〉++ τ ′, and we need to recurse:

rmstall(τ) ,

®
rmstall(δ :: τ ′) if β = δ,

〈δ, β〉++ rmstall(δ′ :: τ ′) otherwise.

Property 10.2 (Validity of rmstall). If τ is a quasidialogue from a program,
then rmstall(τ) is a dialogue from the same program; and if π is a quasiplay in
some game, then rmstall(π) is a play in the same game. In addition, rmstall
leaves dialogues and plays intact:

π dialogue or play =⇒ rmstall(π) = π

Property 10.3 (rmstall is v-monotone).

τ v τ ′ =⇒ rmstall(τ)v rmstall(τ ′).

We now define the important notion of a strategy. Roughly speaking, we
want a strategy to dictate how a believer should play against a doubter. If it
covers all potential doubter moves, we will call it total, and if it always leads
to victory, winning. Formally, we define:

Definition 10.8 (Strategy). A strategy σ in ΓP(← G) is a set of plays in
ΓP(← G), such that:

10.2. THE DLPG GAME 67

(i) σ 6= ∅;

(ii) every play in σ has even length;

(iii) σ is closed under even prefixes (and therefore always contains ε):

π′ ve π ∈ σ =⇒ π′ ∈ σ;

(iv) σ is deterministic: if π ∈ σ and π ++ 〈δ〉 is a play, then there exists at
most one move β such that π ++ 〈δ, β〉 ∈ σ.

We will call a strategy combo-free if none of its plays contains combo moves;
in symbols, β ∈ π ∈ σ =⇒ |β| = 1.

@ Remark 10.5 (Strategies as posets). A strategy σ can be seen as a poset
(σ,ve) of even-length plays with a bottom element ⊥σ = ε.

Definition 10.9 (Total strategy). A strategy σ is called total, if for every play
π ∈ σ and every doubter response to it δ (i.e., a δ such that π ++ δ is a play),
there is at least one move β such that π ++ 〈δ, β〉 is also in σ.

Siding with Believer, we give the following definition:

Definition 10.10 (Winning strategy). A strategy σ is called winning, if it is
total and finite.

@ Remark 10.6 (Infinite plays and limits). Let us pretend awhile that di-
alogues (and plays) might be infinite. We should then change (among other
things) the definition of strategy to demand that it is also closed under limits—
or, should we? If we do so, nothing essential will change, as a correspondence
between such strategies and the ones we are using here is obvious:

• starting from a strategy with infinite plays, simply remove them—all
their finite, even prefixes are already included;

• starting from a strategy with only finite plays, add all limits (i.e., lubs of
ve-chains).

On the other hand, if we do not close under limits, we will end up distinguishing
between strategies like σ and σ∞, where:

σ := {〈δ0, β0, . . . , δn, βn〉 | n ∈ ω} ,
σ∞ := σ ∪ {

∨
σ} .

Such a distinction could potentially be useful for some kind of ordinal extension
of games. But for reasons of elegance and simplicity we have chosen not to deal
with infinite dialogues altogether, as they are not needed for the development
of this game semantics of disjunctive logic programs.

Definition 10.11 (answerσ). Given a play π and a strategy σ in some game
ΓP(← G), the play answerσ(π) ∈ σ will be:

answerσ(π) ,

π if π ∈ σ,
π ++ 〈β〉 if there exists a β such that π ++ 〈β〉 ∈ σ,
undefined otherwise.

68 CHAPTER 10. THE DLPG SEMANTICS

This is a well-defined partial function because σ is deterministic, and so in the
second branch, if such a β exists, it is necessarily unique. Furthermore, if σ is
total, answerσ(π) is undefined iff π− /∈ σ. Hence, if we stick from the beginning
to a total strategy, it will always provide us with a next move, an answer to
any doubter move.

Property 10.4. The function answerσ behaves like a closure operator; i.e.,
whenever it is defined throughout the following statements, it satisfies them:

π v answerσ(π) (extensive),

π v π′ =⇒ answerσ(π)v answerσ(π′) (monotone),

answerσ(answerσ(π)) = answerσ(π) (idempotent).

The DLPG game we have investigated is in a sense equivalent to the sim-
plified one that we described previously. This is a consequence of the logical
equivalence D g E ≡ D ∨ E and of the following proposition:

Proposition 10.5. Let D , E , and F be L.P. conjunctions such that F ≡
D ∨ E . Then for every disjunction F ∈ F there is some disjunction DF ∈ D
and some disjunction EF ∈ E such that DF ∪ EF ⊆ F .2

Proof. Pick any disjunction F of F . Consider the interpretation α = At \ F .
By definition, an assignment that makes F false, must falsify F as well. But F
is logically equivalent to D∨E , which means that both D and E are false under
α. Since they are both conjunctions, there is at least one element DF ∈ D that
is false, and similarly for an element EF ∈ E .

We have exposed every little detail that we will need in order to develop the
DLPG semantics in a formal mathematical setting. Let us do so: in the next two
sections, we define the combination and splitting of both plays and strategies.
The main point is that these constructions preserve all the properties that we
need.

10.3 Plays: combining, restricting, and splitting

Here we show how we can combine arbitrary plays from games of the splitting
of a program to create a valid play in the original program’s game. The con-
struction we use is slightly technical but hopefully the intuition behind it will
be apparent to the reader, who will then have no problem appreciating and
accepting the details. We will also see how to work in the opposite direction:
starting from a play of a game of the combined program we can split it into
two plays, valid in the games of the less disjunctive, restricted programs.

Further notational conventions. To avoid tedious repetitions in what fol-
lows, we hereby agree that P will always be a proper DLP program, ← G a
goal clause, and φ a proper DLP rule of P; H := (H1, H2) will be a proper
partition of H := head(φ), and (P1,P2) the corresponding splitting of P with
respect to φ over H. Naturally we will write just φ1 and φ2 for the rules φ|H1

2L.P. disjunctions and conjunctions were introduced in Definition 3.1.

10.3. PLAYS 69

and φ|H2
respectively. The variable q ranges over the size of the partition:

q = 1, 2.3 We use π and πq for dialogues or plays of ΓP(← G) and ΓPq (← G)
respectively; τ and τq for “quasi-”. We remind the reader that we solely use
β and δ for believer and doubter moves respectively, and that strategies are
usually denoted by σ. In this setting, with this notation, we proceed to define
combination, restriction, and splitting of both plays and strategies.

Combining plays

As we are about to witness, while combining plays special care must be taken
because a believer move of a restricted play Pq might not be valid in P:

Definition 10.12 (Forbidden move). A believer move β of ΓPq (← G) is called
forbidden in ΓP(← G) iff it includes φq. In symbols,

Forbiddenq(β)
4⇐⇒ φq ∈ β.

Definition 10.13 (Release). Given a believer move βqi of ΓPq (← G), we define

βqi
∗

to be βqi after replacing instances of the forbidden rule φq by φ, so that it
becomes valid in ΓP(← G). We call βqi

∗
the release of βqi from Hq to H.

Property 10.6. The release of a move satisfies the following properties:

(i) βqi
∗

= βqi ⇐⇒ φq /∈ βqi ;

(ii) body
(
βqi
∗)

= body(βqi).

In order to justify believer moves in the combined play, we will need the
following proposition:

Proposition 10.7. Let β1 and β2 be two believer moves from P1 and P2 re-
spectively, and let β := β1

∗ ++ β2
∗. Then

head([β]) = head([β1]) ∪ head([β2]).

Proof. We compute

head([β1]) ∪ head([β2]) =
(⋃

ψ∈β1

head(ψ)
)
∪
(⋃

ψ∈β2

head(ψ)
)

=
⋃

ψ∈β1++β2

head(ψ)

= head([β1 ++ β2])
∗
= head([β1

∗ ++ β2
∗])

= head([β]),

where the starred equality holds since

head(φ1) ∪ head(φ2) = H1 ∪H2 = head(φ).

First we define combination for what we call synchronous plays, as it is a
lot simpler. Once we have seen how to combine such plays, we proceed to give
the most general definition covering arbitrary plays.

3There is nothing special about the number 2 here, and everything that we develop can
be stated mutatis mutandis for the case in which |H| is any larger number. However, 2 is as
large as we need.

70 CHAPTER 10. THE DLPG SEMANTICS

Combining synchronous plays

The three games ΓP(← G), ΓP1
(← G), and ΓP2

(← G) would be identical except
that φ can only be part of believer moves of ΓP(← G), φ1 of those of ΓP1(← G),
and φ2 of those of ΓP2(← G). Since moves are sequences, it would be delightful
to simply concatenate the moves of π1 with those of π2 to obtain a play in
ΓP(← G). Doubter moves are no obstacles to this plan, but believer moves
can be troublesome: they may contain the rules φq, which are not allowed in
ΓP(← G). This problem is easy to solve if both moves include their forbidden
rules: we simply replace each of them by φ—a reasonable action, since φ ≡
φ1 g φ2. To deal with this case, we begin with a key definition.

Definition 10.14 (Synchronous). Two quasiplays τ1 and τ2 in ΓP1
(← G) and

ΓP2(← G) respectively are called synchronous (or in sync with each other) if
both Believers use their forbidden rules in the exact same turns. In symbols,

for all i ≤ min {|τ1| , |τ2|}, φ1 ∈ β1
i ⇐⇒ φ2 ∈ β2

i .

Property 10.8. If τ1 is in sync with τ2, then so is any prefix of τ1 with any
prefix of τ2.

Let π1 and π2 be plays of even length in the games ΓP1(← G) and ΓP2(← G)
respectively, and suppose that the two plays are synchronous. We will describe
a new play π1 g̈ π2: the synchronous combination of π1 and π2 with respect
to φ over H. To better understand this construction, we first present the idea
informally, building the combined play turn by turn. We do so as follows: let

π1 :=
〈
δ10 , β

1
0 , δ

1
1 , β

1
1 , . . .

〉
π2 :=

〈
δ20 , β

2
0 , δ

2
1 , β

2
1 , . . .

〉
be the two given plays. We set

π1 g̈ π2 , 〈δ0, β0, δ1, β1, . . . 〉 ,

where the symbols are defined as follows.
The first move is essentially determined by the game: Doubter starts with

δ0 := δ10 ++ δ20 ;

Assuming that φi /∈ βi0, Believer replies with

β0 := β1
0 ++ β2

0 = β1
0
∗

++ β2
0
∗
,

a valid move since head([β0]) ⊆ [δ0] (Property 10.6, Proposition 10.7). Now
Doubter must select one occurrence from each rule-body in β0, and the moves
δ11 and δ21 provide just that:

δ1 := δ11 ++ δ21 .

The game goes on until the turn i in which the believers of π1 and π2 both
play their forbidden rules φ1 and φ2 in their justifications. At this point, it is
of course Believer’s turn in the combined play π1 g̈ π2. We set his move to be

βi := β1
i
∗

++ β2
i
∗
,

10.3. PLAYS 71

which is valid in ΓP(← G). Doubter’s turn: δ1i+1 and δ2i+1 consist of occurrences
from the rule-bodies of β1

i and β2
i respectively. Since releasing only affects heads

(Property 10.6(ii)), all occurrences in the rule-bodies of βqi are occurrences in
the rule-bodies of βqi

∗
as well. Therefore, she can copy the selections of δ1i+1

and δ2i+1 by playing

δi+1 := δ1i+1 ++ δ2i+1.

She does so, and the game goes on until we run out of moves to combine.

@ Remark 10.7. We have cheated a bit, since we took for granted that the
doubter of π1 g̈ π2 has in her possession two doubter moves δ1k and δ2k from π1
and π2 respectively. This will not hold if the plays have unequal lengths; in
this case, the combined play ends as soon as the shortest play ends.

We arrive at the following definition, general enough to handle quasiplays:

Definition 10.15 (Synchronous combination). Given two synchronous quasi-
plays

τ1 :=
〈
δ10 , β

1
0 , δ

1
1 , β

1
1 , . . .

〉
of ΓP1

(← G),

τ2 :=
〈
δ20 , β

2
0 , δ

2
1 , β

2
1 , . . .

〉
of ΓP2

(← G),

their synchronous combination τ1 g̈ τ2 over φ with respect to H is the sequence

τ1 g̈ τ2 , 〈δ0, β0, δ1, β1, . . . 〉

of length |τ1 g̈ τ2| = min {|τ1| , |τ2|}, where the symbols involved are defined by

δi := δ1i ++ δ2i ,

βi := β1
i
∗

++ β2
i
∗
.

Proposition 10.9 (Validity of g̈). Given two synchronous quasiplays τ1 and
τ2 of ΓP1

(← G) and ΓP2
(← G) respectively, τ := τ1 g̈ τ2 is a quasiplay in

ΓP(← G). It follows that if τ1 and τ2 do not stall simultaneously, τ will be a
play of the game ΓP(← G).

Proof. First, by the definitions of δi and βi, it is immediate that they are
doubter and believer moves respectively. Since each quasiplay τq is valid in
ΓPq (← G), we know that

head
([
β1
i

])
⊆
[
δ1i
]
,

head
([
β2
i

])
⊆
[
δ2i
]
,

and so by taking unions on both sides and by using Proposition 10.7 we obtain

head([βi]) = head
([
β1
i

])
∪ head

([
β2
i

])
⊆
[
δ1i
]
∪
[
δ2i
]

=
[
δ1i ++ δ2i

]
= [δi] ,

which validates every believer move. Doubter moves are justified by the defi-
nition of release (which leaves bodies intact) as explained earlier in the sketchy
description of play combination (p. 70). To verify that τ is indeed a quasiplay,
observe that both τ1 and τ2 share the same goal with τ , and so δ0 = δ10 ++ δ20 is
a correct first move for a quasidialogue from P to be a quasiplay of ΓP(← G).

For the second claim, observe that a stalling move in τ1 g̈ τ2 would imply
the existence of two simultaneously played stalling moves, one in τ1 and one in
τ2, against the hypothesis.

72 CHAPTER 10. THE DLPG SEMANTICS

As plays never stall, we get the following property as a corollary:

Corollary 10.10 (Preservation of plays). The synchronous combination of two
synchronous plays is a play.

The definition of g̈ immediately yields a couple of more preservation properties:

Property 10.11 (Preservation of parity). Let τ1 and τ2 be two synchronous
quasiplays, both of even length. Then τ1 g̈ τ2 will also have even length.

Property 10.12 (g̈ is monotone). Let τ1 and τ2 be two synchronous quasi-
plays. Then for any τ ′1 v τ1 and any τ ′2 v τ2 we have τ ′1 g̈ τ

′
2 v τ1 g̈ τ2.

So far, so good. Not every pair of plays is synchronous though, which brings
us to the next topic.

Combining arbitrary plays

Starting with two arbitrary quasiplays τ1 and τ2, we build two new, synchro-
nized quasiplays τ̇1 and τ̇2 by inserting pairs of stall–follow moves on the turns
in which one believer uses his forbidden rule but the other does not, leaving
the rest of the moves intact. Now we can simply combine τ̇1 with τ̇2. It is
exactly this idea that we exploit to extend the definition of τ1 g̈ τ2 to cover
asynchronous plays: synchronize first, then combine.

Definition 10.16 (Synchronization). Let τ1 and τ2 be two quasidialogues from
P1 and P2 respectively, and let `1 and `2 be their lengths. We recursively define
their synchronization sync(τ1, τ2) by cases depending on ` := min{`1, `2}.
Case 1: ` < 2. In this case, there are no believer moves at all (in the shortest
play); and they are the only ones that can cause asynchronicity. Hence, any
such pair is trivially synchronous:

sync(τ1, τ2) , (τ1, τ2) .

Case 2: ` ≥ 2. Then τ1 := 〈δ1, β1〉++ τ ′1 and τ2 := 〈δ2, β2〉++ τ ′2, and we set:

sync(τ1, τ2) ,

(〈
δ1, δ1

〉
++ rec1, 〈δ2, β2〉++ rec2

)
if (a),(

〈δ1, β1〉++ rec1,
〈
δ2, δ2

〉
++ rec2

)
if (b),(

〈δ1, β1〉++ rec1, 〈δ2, β2〉++ rec2
)

if (c),

where rec1 and rec2 wrap the recursive calls

(rec1, rec2) :=

sync
Ä
δ1 :: β1 :: τ ′1, τ

′
2

ä
if (a),

sync
Ä
τ ′1, δ2 :: β2 :: τ ′2

ä
if (b),

sync(τ ′1, τ
′
2) if (c),

all according to the subcases: (a) φ1 ∈ β1 and φ2 /∈ β2; (b) φ1 /∈ β1 and
φ2 ∈ β2; (c) otherwise.

10.3. PLAYS 73

@ Remark 10.8 (Dependencies). Even though we have not incorporated φ1
and φ2 into the symbol sync of synchronization, we stress that it does, in fact,
depend on both of those rules: it uses them to determine the (a)–(c). Since
we have fixed φ, φ1, and φ2 into our notation, however, we allow ourselves to
simply use sync instead of an excessively precise name like syncφ1,φ2

. The same
is true for various symbols that we use, such as g and ∗.

Proposition 10.13. Synchronization is a well-defined, total operation.

Proof. Observe that on every recursive call of sync both of its arguments are
themselves quasidialogues from P1 and P2; and so it makes sense to recurse on
them. Since sync is defined by recursion, we must be careful to ensure that it
terminates on every input. Note that on every recursive call of case 2 (` ≥ 2),
the sum of the lengths of the arguments decreases: by 2 in subcases (a)–(b),
and by 4 in (c). Eventually, at least one of them will become short enough and
sync will reach case 1 (` < 2), which contains no recursive calls.

One can easily verify that synchronization behaves as expected:

Property 10.14 (Validity of synchronization). Let (τ̇1, τ̇2) := sync(τ1, τ2).
Then

(i) the pair (τ̇1, τ̇2) is synchronous;

(ii) if (τ1, τ2) happens to be synchronous, then sync(τ1, τ2) = (τ1, τ2);

(iii) rmstall(τ̇q) = rmstall(τq);

(iv) sync never produces two fresh stalling moves in the same turn.

Proposition 10.15 (Preservation of parity). If τ1 and τ2 have even lengths,
then so do the elements of sync(τ1, τ2).

Proof. This is immediate by the very definition of sync, which generates its
output sync(τ1, τ2) incrementally by pairs of moves, while consuming pairs of
moves from its inputs τ1 and τ2. Thus, if both of its inputs are of even length,
the same will be true for its outputs.

Proposition 10.16 (sync is monotone). Let τ ′1 and τ ′2 be two quasidialogues,
and let τ1vτ ′1 and τ2vτ ′2. Then sync(τ1, τ2)vsync(τ ′1, τ

′
2). Moreover, if τ1<τ ′1

and τ2 < τ ′2, then sync(τ1, τ2) < sync(τ ′1, τ
′
2).

Proof. Just like in the previous proof, we only need to observe how synchro-
nization really works. In fact, the construction of sync(τ1, τ2) must end with a
call to case 1 of its definition, with either ` = 0 or ` = 1. In either case, extend-
ing any of τ1 or τ2 results in an extension of the corresponding synchronized
quasidialogue.

We know how to combine synchronous plays; and we know how to synchro-
nize asynchronous plays. Compose the two and behold: a method to combine
arbitrary plays. Just as in the synchronous case, we state the definition in its
most general form, which is able to handle quasidialogues.

74 CHAPTER 10. THE DLPG SEMANTICS

Definition 10.17 (Combination of quasidialogues). Let τ1 and τ2 be two qua-
sidialogues from P1 and P2 respectively. We define their combination τ1 g τ2
by composition:

g , g̈ ◦ sync.

In other words,
τ1 g τ2 , τ̇1 g̈ τ̇2,

where (τ̇1, τ̇2) := sync(τ1, τ2).

@ Remark 10.9. By Property 10.14(ii), g is compatible with g̈, in the sense
that it yields the same output in case its input is synchronous.

@ Remark 10.10 (End of τ1 g τ2). According to the definitions of synchro-
nization and syncronous combination, the combined quasidialogue τ1g τ2 ends
exactly when we reach the final move of either τ1 or τ2 (whichever comes first).

By defining the general combination as a composition of sync and g̈, we
readily get their composable properties as corollaries:

Corollary 10.17 (Validity of combination). Given two (quasi)dialogues τ1
and τ2 from P1 and P2 respectively, their disjunctive combination τ1 g τ2 is
a (quasi)dialogue from P.

Corollary 10.18 (Preservation of plays). If τ1 and τ2 are two (quasi)plays in
ΓP1

(← G) and ΓP2
(← G) respectively, then τ1g τ2 is a (quasi)play in ΓP(← G).

Corollary 10.19 (Preservation of parity). If π1 and π2 have even lengths,
then so does π1 g π2.

Corollary 10.20 (g is monotone). Let π′1 and π′2 be two dialogues, and let
π1vπ′1 and π2vπ′2. Then π1gπ2vπ′1gπ′2. Moreover, if π1 <π′1 and π2 <π′2,
then π1 g π2 < π′1 g π

′
2.

@ Remark 10.11 (Losing is not preserved). Even though Doubter may be vic-
torious in two plays, in the combined version she might not be so. As a coun-
terexample, consider the following program and splitting, in which Doubter
wins both π1 and π2 (i.e., Believer cannot play a valid response to either plays)
and yet she is going to lose in the combined play:

P :=

p ← a

p ← b

a ∨ b ←
c ∨ d ←

á

P1 :=

p ← a

p ← b

a ∨ b ←
c ←

 , P2 :=

p ← a

p ← b

a ∨ b ←
d ←

ë

and the plays

∣∣∣∣∣ goal : ← p

β1
0 : p ← a

∣∣∣∣∣︸ ︷︷ ︸
π1

g

∣∣∣∣∣ goal : ← p

β2
0 : p ← b

∣∣∣∣∣︸ ︷︷ ︸
π2

=

∣∣∣∣∣∣∣∣∣∣
goal : ← p

β0 : p ← a

p ← b

[β0] : p ← a ∨ b

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
π

.

10.4. STRATEGIES 75

Notice that Believer cannot move in neither of the starting plays, but he can
certainly move in their combination by playing the rule a ∨ b ← . However,
as we will later see, such misbehaviors are evaded if the plays πq come from a
strategy splitting; the impatient can read Corollary 10.28 (p. 81).

@ Remark 10.12 (Combining goals). When combining plays, their common
goal ← G does not really have to be all that common. We can combine a play
in ΓP1

(← G1) with a play in ΓP2
(← G2) to get a new play in ΓP(← G), where

G := G1 ∨ G2. To do so, we first extract plays in ΓP1
(← G) and ΓP2

(← G) by
altering only the first move in each play so that it is restricted to Gq; then we
combine. But we will not need to do such a thing in this work.

We have seen how to combine plays; now it is time to restrict and split
them.

Restricting and splitting plays

Definition 10.18 (Play restriction). Suppose that π is a play and consider
the sequence obtained by restricting every believer move in π that contains φ
to an identical move in which φ has been restricted to Hq. We denote this

sequence by π|φHq and call it the restriction of the play π to Hq with respect to
φ.

Theorem 10A. For any play π of ΓP(← G), its restriction πq := π|φHq is a

valid play in ΓPq (← G).

Proof. Note that the only alteration performed leaves all bodies intact, so that
every doubter move remains valid. The only case where a head is altered is
when a believer move β of π includes the forbidden rule φ. Denoting by βq the
corresponding believer move of πq, it is evident that head([βq]) ⊆ head([β])
so that in both plays, every believer move is valid as well.

Naturally we define splitting as a pair of restrictions:

Definition 10.19 (Play splitting). Given a play π of ΓP(← G), the play split-
ting of π with respect to φ over H is the pair

π|φH ,
Ä
π|φH1

, π|φH2

ä
.

Thanks to Theorem 10A, these plays are indeed valid in the corresponding
games.

After all this work on plays, strategies are next; but we have done most of
the hard work in this section, so that the following one will be a breeze.

10.4 Strategies: combining, restricting, and splitting

In the previous section we defined combination, restriction, and splitting for
plays in a given game, and proved the correctness of these definitions. Now
we will do the same for strategies, keeping the same notation that we agreed
upon. The combination and the splitting of strategies lie at the hearts of our
proofs of completeness and soundness respectively.

76 CHAPTER 10. THE DLPG SEMANTICS

Combining strategies

Combination of plays can be extended to strategies in a straightforward way:

Definition 10.20 (Combination of strategies). Given two strategies σ1 and
σ2 in ΓP1

(← G) and ΓP2
(← G) respectively, we define their combination

σ1 g σ2 , {π1 g π2 | π1 ∈ σ1 and π2 ∈ σ2} .

Definition 10.21. Given a play π ∈ σ := σ1 g σ2, we call the elements of the
set

C(π) , {(π1, π2) ∈ σ1 × σ2 | π1 g π2 = π}

the creators of π from σ1 and σ2. Equipped with the product order induced by
either v or ve, the set C(π) becomes a poset; and as we are about to see, it
always has a least element: a pair which we naturally call the shortest creators
of π from σ1 and σ2. Note that the two orderings v and ve coincide in this
poset since all plays involved come from strategies, and therefore are of even
length.

We will now prove an important “decomposition” property, which essen-
tially allows us to reverse play-combination in case the two plays come from
appropriate strategies.

Lemma 10.21 (Reversibility of combination). Given a play π ∈ σ := σ1g σ2,
we can extract in a unique way, two synchronized quasiplays τ1 and τ2, each of
length |π|, such that τ1g̈τ2 = π and both τq agree with σq, i.e., rmstall(τq) ∈ σq.

Proof. Corollary 10.19 guarantees that |π| is even, which allows us to prove the
lemma by induction on ` := |π| / 2:

Base: (` = 0). Trivially, (〈 〉 , 〈 〉) is the pair that we seek.
Induction step: (` = n+ 1). Let

π := 〈δ0, β0, . . . , δn, βn〉 .

By the induction hypothesis, we know that there are two unique, synchronized
quasiplays

τ ′1 :=
〈
δ10 , β

1
0 , . . . , δ

1
n−1, β

1
n−1
〉

τ ′2 :=
〈
δ20 , β

2
0 , . . . , δ

2
n−1, β

2
n−1
〉

which combine into π− and agree with the corresponding strategies. Notice
that if (τ1, τ2) satisfies the requested properties for π, then (τ−1 , τ

−
2) satisfies

them for π−, so that τ−1 = τ ′1 and τ−2 = τ ′2. This guarantees that the following
construction is the only one possible. We need to determine δqn and βqn. Since
π is a play, the doubter move δn is either the first move (n = 0), or it consists
of doubts from the bodies of the last believer moves in τ ′1 and τ ′2 (n > 0). In
the first case, we set δqn := δn, while in the second one, we split it in a unique
way in two parts,

δn := δ1n ++ δ2n,

such that δqn is a valid doubter response to τ ′q. We now use these δqn to obtain
the corresponding believer moves. For this we appeal to the fact that σq (being

10.4. STRATEGIES 77

T1 σ1 g σ2 T2

T1 σ1 g σ2 T2

projσ1oo
projσ2 //

projσ1

oo
projσ2

//

−

��
−

��
−

��

Figure 10.1: Commutative diagram for Property 10.22.

deterministic) can have at most one next-move for the play rmstall
(
τ ′q ++ 〈δqn〉

)
,

and we know that it has at least one since π ∈ σ1 g σ2. We first define

bqn :=
(
answerσq ◦ rmstall

) (
τ ′q ++ 〈δqn〉

)
.

Note that as this is an answer from σq, the quasiplay τ ′q ++ 〈δqn, bqn〉 remains in
agreement with it. Now we finally obtain the believer moves by setting

(β1
n, β

2
n) :=

(δ1n, b

2
n) if φ1 ∈ b1n and φ2 6∈ b2n

(b1n, δ
2
n) if φ1 6∈ b1n and φ2 ∈ b2n

(b1n, b
2
n) otherwise.

Definition 10.22 (Projections of plays). We call the quasiplay τq of the above
lemma the projection of π on σq and denote it by projσq (π).

By their construction, projections satisfy the following property:

Property 10.22. Given any π ∈ σ := σ1 g σ2,

projσq
(
π−
)

=
Ä
projσq (π)

ä−
.

In other words, denoting by Tq the sets of quasiplays in ΓPq (← G), the diagram
in Figure 10.1 commutes.

A link between projections and shortest creators is revealed: starting with
π as above, first use Lemma 10.21 to obtain the quasiplay projections of π.
Then, using rmstall, remove all existing stall–follow moves; and finally, in case
the quasiplay ended in a stall move, appeal to the strategy’s totality to append
the appropriate answer from σq. Following these steps, one actually obtains
the shortest creators of π from σ1 and σ2. This will be clarified shortly in a
lemma—but first, a definition that we will need:

Definition 10.23. Let π ∈ σ := σ1 g σ2. We define the function crσq : σ ⇀ σq
as the composition

crσq , answerσq ◦ rmstall ◦ projσq ,

and simply write

cr(π) , (crσ1
(π), crσ2

(π))

for the function cr : σ ⇀ σ1 × σ2. Both functions will turn out to be total.

78 CHAPTER 10. THE DLPG SEMANTICS

Lemma 10.23. Let π ∈ σ := σ1 g σ2. Then

cr(π) = min C(π).

Proof. Let π := 〈δ0, β0, . . . , δn, βn〉 ∈ σ1 g σ2 and pick any pair of creators
(π1, π2) ∈ C(π), so that π1 g π2 = π. We will show that cr(π)ve (π1, π2). Set
(τ1, τ2) := sync(π1, π2), and write

τ1 :=
〈
δ10 , β

1
0 , δ

1
1 , β

1
1 , . . . , δ

1
n1
, β1
n1

〉
τ2 :=

〈
δ20 , β

2
0 , δ

2
1 , β

2
1 , . . . , δ

2
n2
, β2
n2

〉
.

By definition, π = τ1 g̈ τ2, so that

π =
〈
δ10 ++ δ20︸ ︷︷ ︸
δ0

, β1
0
∗

++ β2
0
∗︸ ︷︷ ︸

β0

, δ11 ++ δ21︸ ︷︷ ︸
δ1

, β1
1
∗

++ β2
1
∗︸ ︷︷ ︸

β1

, . . . , δ1n ++ δ2n︸ ︷︷ ︸
δn

, β1
n
∗

++ β2
n
∗︸ ︷︷ ︸

βn

〉
,

where n := min {n1, n2}. Now, using the monotonicity of rmstall and answerσq
(Properties 10.3 and 10.4), we reason:

projσq (π)ve τq =⇒ rmstall
Ä
projσq (π)

ä
ve rmstall(τq)

=⇒ answerσq
Ä
rmstall

Ä
projσq (π)

ää
ve answerσq (rmstall(τq))

=⇒ cr(π)ve answerσq (rmstall(τq)).

Notice that τq cannot end in a stalling move, and so rmstall(τq) will have even
length. According to Definition 10.11, we can then expect that

answerσq (rmstall(τq)) = rmstall(τq),

so that by using Property 10.14(iii) we derive

cr(π)ve rmstall(τq) = πq,

which is what we wanted to prove.

We now relate the shortest creators of a play with those of its even prefixes.

Proposition 10.24. Let ε 6= π ∈ σ := σ1 g σ2, and let πq := crσq (π). Then

cr
(
π−
)

=

(
π−1 , π2

)
if (a),(

π1 , π
−
2

)
if (b),(

π−1 , π
−
2

)
if (c),

depending on whether (a) the penultimate believer move of projσ2
(π) is a

stalling, (b) the penultimate believer move of projσ1
(π) is a stalling, or (c)

otherwise.

Proof. This is a consequence of Property 10.22. Perhaps the weird-looking
conditions need further explanation. The last believer move of πq is needed to
form the last move of π− iff the penultimate move of projσq (π) is a stalling. This
holds because once we project a play to σq, stalling moves might appear to the
quasiplay projections. If the penultimate move of projσq (π) is such a stalling,

10.4. STRATEGIES 79

σ1 σ1 g σ2

σ1 σ1 g σ2 σ2

crσ1oo
crσ2

��

crσ1
oo

crσ2
//

−

��

−

��

Figure 10.2a: The penultimate believer move of projσ2(π) is a stalling.

σ1 g σ2 σ2

σ1 σ1 g σ2 σ2

crσ1

crσ2 //

crσ1
oo

crσ2
//

−

��
−

��

Figure 10.2b: The penultimate believer move of projσ1(π) is a stalling.

σ1 σ1 g σ2 σ2

σ1 σ1 g σ2 σ2

crσ1oo
crσ2 //

crσ1
oo

crσ2
//

−

��

−

��
−

��

Figure 10.2c: Otherwise.

once we delete the last move from πq to obtain π−q , and use rmstall to remove
all stall–follow moves, the resulting play will be of odd length. answerσq (τ) will
then reproduce the move we deleted, thus bringing us back to πq.

Since g never concatenates two stalling moves, projσ1
(π) and projσ2

(π) will
never stall simultaneously; this proves that the conditions (a)–(c) are mutually
exclusive.

This proposition might become clearer after inspecting the three commuta-
tive diagrams of Figure 10.2. There, the stated equality is represented by the
commutativity of an appropriate diagram, one for each case (a)–(c).

Corollary 10.25. Let ε 6= π ∈ σ := σ1 g σ2. Then

(i) min C(π−) <e min C(π);

(ii) min C(π′)ve min C(π), for any π′ ve π.

Theorem 10B. The set σ := σ1 g σ2, is a strategy in ΓP(← G).

Proof. Foremost it is indeed a set of plays in ΓP(← G) thanks to Corollary 10.17.
Non-empty. Since σ1 and σ2 are strategies, they are both non-empty, and

so there is at least one play in σ (obtained by combination).
Even-length. This is a direct application of Corollary 10.19.

80 CHAPTER 10. THE DLPG SEMANTICS

Even-prefix-closed. This is immediate by Corollary 10.25, since both σq are
strategies and therefore closed under even prefixes.

Deterministic. Towards a contradiction, assume that π and π̃ are plays of
even length in σ that differ only in the last believer move:

π := 〈δ0, β0, . . . , δn, βn〉

π̃ :=
¨
δ0, β0, . . . , δn, β̃n

∂
.

For each of them, use Lemma 10.21 to extract its two quasiplay projections on
σ1 and σ2; (τ1, τ2) from π and (‹τ1,‹τ2) from π̃.

τ1 :=
〈
δ10 , β

1
0 , . . . , δ

1
n, β

1
n

〉 ‹τ1 :=
¨
δ10 , β

1
0 , . . . , δ

1
n, β̃

1
n

∂
τ2 :=

〈
δ20 , β

2
0 , . . . , δ

2
n, β

2
n

〉 ‹τ2 :=
¨
δ20 , β

2
0 , . . . , δ

2
n, β̃

2
n

∂
,

so that

π =
¨
δ10 ++ δ20 , β

1
0
∗

++ β2
0
∗
, . . . , δ1n ++ δ2n, β

1
n
∗

++ β2
n
∗∂

π̃ =
〈
δ10 ++ δ20 , β

1
0
∗

++ β2
0
∗
, . . . , δ1n ++ δ2n, β̃

1
n

∗
++ β̃2

n

∗〉
.

Now, which of the four statements φ ∈ βqn
∗ and φ ∈ β̃qn

∗
hold? By a tedious and

trivial inspection of all 16 different cases that arise, one can confirm that every
case leads to a contradiction, by obtaining two plays of the same strategy σq,
differing only in their final (believer) move. This is of course absurd because
strategies are deterministic.

Proposition 10.26 (Preservation of totality). The combined strategy σ1 g σ2
is total if both σ1 and σ2 are total.

Proof. Suppose that we are given a play 〈δ0, β0, . . . , δn, βn, δn+1〉 such that the
immediate prefix

π := 〈δ0, β0, . . . , δn, βn〉 ∈ σ.

We seek a believer move βn+1 such that π++〈δn+1, βn+1〉 ∈ σ. Use Lemma 10.21
to extract the quasiplay projections (τ1, τ2) of π on σ1 and σ2, so that

π = τ1 g̈ τ2 :=
¨
δ10 ++ δ20 , β

1
0
∗

++ β2
0
∗
, . . . , δ1n ++ δ2n, β

1
n
∗

++ β2
n
∗∂
.

Since δn+1 is a valid next-move for π, it consists of doubts from the bodies of
β1
n and β2

n (Property 10.6(ii)), so that it can be unambiguously split into two
sequences of such doubts δn+1 := δ1n+1 ++ δ2n+1. By the totality of σq, there
must be at least one believer move βqn+1 satisfying

π+
q := rmstall(τq) ++

〈
δqn+1, β

q
n+1

〉
∈ σq.

Easily now, π+
1 g π

+
2 contains the believer move that we need.

Proposition 10.27 (Preservation of finiteness). The combined strategy σ1gσ2
is finite if both σ1 and σ2 are finite.

Proof. By the definition of strategy combination, |σ| is bounded by |σ1 × σ2|,
which is finite since both σq are finite.

10.4. STRATEGIES 81

Remembering that total + finite = winning, we arrive at the following corollary:

Corollary 10.28 (Preservation of winning). The combined strategy σ1g σ2 is
winning if both σ1 and σ2 are winning.

Restricting and splitting strategies

Definition 10.24 (Strategy restriction). Let σ be a strategy in ΓP(← G).
Then the restriction of σ with respect to φ on Hq, is the set of plays defined
by:

σ|φHq ,
¶
π|φHq

∣∣∣ π ∈ σ© .
Theorem 10C. The set of plays σq := σ|φHq is a valid strategy in ΓPq (← G).

Proof. Non-empty. This is trivial, since σ 6= ∅.
Even-length. It is obvious that restriction leaves lengths of plays intact, so

that every member of σq has even length.

Even-prefix-closed. Let π′q v πq ∈ σq, with ` :=
∣∣π′q∣∣ even. We need π′q ∈ σq.

Since πq ∈ σq, there is a π ∈ σ such that πq = π|φHq . We now compute:

π′q = πq�` =
Ä
π|φHq
ä
�` = (π�`)︸ ︷︷ ︸

∈σ

|φHq ,

which shows that π′q ∈ σq as was desired.

Deterministic. Suppose that we have the following plays in σq:

πq := 〈δq0, β
q
0 , δ

q
1, β

q
1 , . . . , δ

q
k, β

q
k〉 ,

π̃q :=
〈
δq0, β

q
0 , δ

q
1, β

q
1 , . . . , δ

q
k, β̃

q
k

〉
,

so that there are plays

π := 〈δ0, β0, δ1, β1, . . . , δk, βk〉 ,

π̃ :=
¨‹δ0, β̃0,‹δ1, β̃1, . . . , ‹δk, β̃k∂ ,

in σ, such that

πq = π|φHq and π̃q = π̃|φHq .

Observe that since play-splitting leaves all doubter moves unaltered, we
have that δi = δ̃i (= δqi) for all i = 0, . . . , k. By finite induction on i we show
the corresponding equalities for the believer moves. Assume (the inductive

hypothesis) that βj = ‹βj holds for 0 ≤ j < i ≤ k. Now look at the plays π�2i+2

and π̃�2i+2 which both belong in σ since it is prefix-closed. Then βi = ‹βi since
both plays belong in the same (deterministic) strategy σ. This essentially yields
π = π̃ and consequently πq = π̃q, which establishes the determinacy of σq.

Proposition 10.29 (Preservation of totality). If σ is total, then so is σ|φHq .

82 CHAPTER 10. THE DLPG SEMANTICS

Proof. We are given a play πq ∈ σq and a doubter move δ such that πq ++ δ is
valid in ΓPq (← G), and we seek a believer next-move for it. By the hypothesis,

there exists some π ∈ σ, such that πq = π|φHq . Since bodies are left intact by

restriction, π ++ δ is valid in ΓP(← G). Hence, by the totality of σ, there is a

believer move β such that π++〈δ, β〉 ∈ σ. This means that (π ++ 〈δ, β〉)|φHq ∈ σq,
and its last move is the believer move that we sought.

Proposition 10.30 (Preservation of finiteness). If σ is finite, then so is σ|φHq .

Proof. By definition, every play in σ|φHq is created by restricting a play of σ.

This grants finiteness, as σ|φHq is nothing more than the image of a function

(π 7→ π|φHq) whose domain is the finite set σ.

Corollary 10.31 (Preservation of winning). If σ is winning, then so is σ|φHq .

For one last time, we use restriction to obtain splitting:

Definition 10.25 (Strategy splitting). Let σ be a strategy in ΓP(← G). The
splitting of σ with respect to φ over H is the pair

σ|φH ,
Ä
σ|φH1

, σ|φH2

ä
.

This completes our game-theoretic weaponry for DLP programs. We have
finally reached the point that we can put all those pieces together to prove that
the DLP game semantics is sound and complete with respect to the minimal
model semantics.

10.5 Game semantics

This is essentially the same definition as in the LPG semantics:

Definition 10.26 (DLPG semantics). Let P be a DLP program. A goal ← G

succeeds, if Believer has a winning strategy in ΓP(← G).

The DLPG semantics

• VDLPG , B.

• MDLPG is the set of strategies based on DLP programs.

• mDLPG maps every DLP program to the set of corresponding winning
strategies in the DLPG game.

• aDLPG(Σ)(Q) ,

®
T, if there is a winning strategy σ ∈ Σ for Q

F, otherwise.

@ Remark 10.13. Notice at once that if stalling was allowed, Believer would
have a winning strategy of “forever stalling”, for any goal. This would make
every disjunction derivable! This is one more argument in favor of giving the
benefit of the doubt to the Doubter.

10.6. SOUNDNESS AND COMPLETENESS 83

@ Remark 10.14 (Backwards compatibility). In the model-theoretic side of
semantics, extensions of the language are backwards compatible: for DLP, a
program without disjunctions has a unique minimal model, viz. the least Her-
brand model; for LPN, the well-founded model of a program without negations
is two-valued and coincides with the least Herbrand model as well. Similar
compatibilities are desired and achieved in the game-theoretic side. We high-
light that strictly speaking, the DLP game is not directly compatible with the
LP game in the sense that it does not reduce to it when it is played on an LP
program. The reason behind this is that in the DLP game, believers can play
what we have called combo moves.4 Nevertheless, we will prove in Lemma 10.32
that whenever there is a winning strategy in the DLP game of an LP program,
then there is a winning strategy in which the believer never plays more than
one rule, and is thus compatible with the LP game. In other words, the extra
“combo-rule” of the DLP game is unnecessary in the absence of disjunctions.

10.6 Soundness and completeness

Theorem 10D (Soundness of the finite, clean DLP game semantics). Let P

be a finite, clean DLP program, and ← G a goal. If there is a winning strategy
in ΓP(← G), then G is true in every minimal model of P.

Proof is by induction on the number N(P) of disjunction symbols (∨) that
appear in the heads of P.

Base. Let σ be a winning strategy in ΓP(← G). We claim that there exists
a combo-free winning strategy σ′ in the same game. If so, observe that the
head of the first believer move of every play of σ′ must be one disjunct g of
G. Hence by altering the first (doubter) moves of its plays to correctly doubt
g, we end up with a combo-free, winning strategy in ΓP(← g). This is now
compatible with the LP game and we can use the soundness of the LP game
semantics (Corollary 8.1) to obtain g ∈ LHM(P). But this means that G is
true in LHM(P), the only minimal model of P.
Proof of the claim. If σ contains no combo moves, we are done. Otherwise,
pick a maximal play from σ such that it contains at least one combo move and
look at the last one, β. We show that we can safely replace β by a non-combo
move that contains exactly one of its rules, and still win the game. Towards a
contradiction, suppose that no such rule exists. Then every rule in β contains a
“bad” atom such that when doubted by the doubter, we cannot win. But this
contradicts the fact that σ is winning, as it contains no answer for a doubter
move that doubts exactly one bad atom from each rule of β.

Induction step. Since P is a proper DLP program, we can pick a proper
DLP rule φ ∈ P, and split P with respect to it over some proper partition
(H1, H2) of head(φ) to get (P1,P2). Notice that max {N(P1), N(P2)} < N(P),
which allows us to use the induction hypothesis for both programs Pq.

Let σ be a winning strategy in ΓP(← G), and split it likewise to derive two
strategies σ1 and σ2 for ΓP1(← G) and ΓP2(← G) respectively (Theorem 10C).
Since σ is winning, σ1 and σ2 are also winning (Corollary 10.31), and so by the

4The reader may contrast this with the LPN game, which is directly compatible with the
LP game when no negations are present: the additional rule of LPN (rôle-switch) can only
be used by the believer, and only as an answer to a negative doubt. This cannot happen in
an LP program.

84 CHAPTER 10. THE DLPG SEMANTICS

induction hypothesis we know that G must be true in every minimal model of
P1 and in every minimal model of P2. In other words, G is true in the union
MM(P1)∪MM(P2); so by Lemma 6.2, it is true in every element of MM(P).

Theorem 10E (Completeness of the finite, clean DLPG game semantics). Let
P be a finite, clean DLP program, and← G a goal. If G is true in every minimal
model of P, then there is a winning strategy in ΓP(← G).

Proof is again by induction on N(P):
Base. Since LHM(P) |= G, there is at least one g ∈ G with g ∈ LHM(P).

Using the completeness of the LP game semantics (Corollary 8.1), we obtain
a winning strategy σ in the LP game for P with the goal ← g. Without any
modification, we can consider this as a winning strategy in ΓP(← g). It remains
to correct all first (doubter) moves by including all extra doubts from G in them.
In this way, we have a winning strategy σ′ in ΓP(← G).

Induction step. Again, pick a proper DLP rule φ ∈ P, and split P to
get (P1,P2). We know that G is true in every minimal model of P. Therefore,
it is also true in every model of P (because a non-minimal model can only
make more formulæ true than a minimal one, not less). Using Lemma 6.2
again, MM(P1)∪MM(P2) ⊆ HM(P), so that G is true in every minimal model
of P1 and in every minimal model of P2. By the induction hypothesis, there
are two winning strategies σ1 and σ2 in the games ΓP1(← G) and ΓP2(← G)
respectively. Using Theorem 10B we can combine them to get a new strategy
σ1 g σ2 for ΓP(← G), which is winning by Corollary 10.28.

In order to generalize these results to general DLP programs we need the
following key lemma which connects games on a general DLP program P with
its clean version, P̂.

Lemma 10.32. Let P be a general DLP program, and ← G a DLP goal. Then,
there exists a winning strategy in ΓP(← G) iff there is a winning strategy in
Γ
P̂

(← G).

Proof. “⇒”: We are given a winning strategy σ for ΓP(← G). To win in
Γ
P̂

(← G), we move as follows: suppose that the believer following σ plays

β := 〈ψ1, . . . , ψn〉 .

Now, we might not be able to play the same move, because some of the ψi’s
may be unclean, and therefore not available in P̂. But, since each ρ ∈ P gives
rise to a sequence of clean rules ρ̂ (actually a set, but we can fix an ordering
and get a sequence out of it), we play:

β̂ := ψ̂1 ++ · · ·++ ψ̂n.

This describes a winning strategy σ̂ in Γ
P̂

(← G). We must verify two things:

(i) that β̂ is indeed a valid move, and (ii) that we know how to win from any

next doubter move δ̂. (i) is trivial: it is only the heads that affect the validity of
believer moves. Regarding (ii), we make the following claim: for every ψi ∈ β
and for any doubts δ̂i on “ψi, there is a disjunction Di ∈ body(ψi) such that

10.6. SOUNDNESS AND COMPLETENESS 85

Di ⊆
î
δ̂i
ó
. Then, our move in Γ

P̂
(← G) against a doubter move consisting of

such doubts
δ̂ := “δ1 ++ · · ·++ “δn

is σ’s move for the doubts δ :=
〈
D1, . . . , Dn

〉
, valid thanks to the claim and

the trivial observation thatî
δ̂
ó

=
î “δ1 ++ · · ·++ “δn ó =

î “δ1 ó ∪ · · · ∪ î “δn ó .
Proof of the claim. Assume otherwise: there is a rule ψi ∈ β of the form

ψi := Ei ← Di1 ,,, · · · ,,, Diki ,

and a δ̂i on “ψi such that for all Di
j ∈ body(ψi), D

i
j 6⊆

î
δ̂i
ó
, i.e., there is a

dij ∈ Di
j with dij /∈

î
δ̂i
ó
. But this implies that δ̂ did not doubt anything from

the body of the rule

Ei ← di1 ,,, · · · ,,, diki ∈ “ψi,
which is impossible.

“⇐”: In this direction we are given a strategy σ in Γ
P̂

(← G). Again,
to win in ΓP(← G), we follow σ for as long as it does not instruct us to in-
clude transformed rules, i.e., rules that do not exist in P. Suppose now that
β := 〈ψ1, . . . , ψn〉 is the move that σ would play, where some of the ψi’s are
transformed. We then play

β∨ := 〈ψ∨1 , . . . , ψ∨n 〉 ,
where ψ∨i := the first ρ ∈ P such that ψi ∈ ρ̂.

And this describes a winning strategy σ∨ in ΓP(← G). We must verify the
same claims (i)–(ii) as above. (i) is trivial for the same reason. For (ii), let
δ∨ := 〈D1, . . . , Dn〉 be such a doubter response to β∨ so that Di ∈ body(ψ∨i).
This translates easily to a doubt δ on β, namely

δ := 〈{d1} , . . . , {dn}〉 ,

where di ∈ Di and {di} ∈ body(ψi), so that

[δ] = {d1, . . . , dn} ⊆ D1 ∪ · · · ∪Dn = [δ∨] .

This allows us to copycat the move that σ would play in Γ
P̂

(← G) against δ.
We go on in this manner until the winning strategy σ plays a fact ψ among its
rules; then ψ∨ will also be a fact.

Theorem 10F (Soundness and completeness for finite DLP). Let P be a finite,
general DLP program, and ← G a DLP goal. Then, there exists a winning
strategy in ΓP(← G) iff G is true in every minimal model of P.

Proof. We have proved everything we need:

there is a winning
strategy in ΓP(← G)

⇐⇒ there is a winning
strategy in Γ

P̂
(← G)

(Lemma 10.32)

⇐⇒
G is true on every

minimal model of P̂

(Theorem 10D ⇒)
(Theorem 10E ⇐)

⇐⇒ G is true on every
minimal model of P.

(Property 3.1)

86 CHAPTER 10. THE DLPG SEMANTICS

We now drop the heavy restriction of finiteness. This has the remarkable
consequence that we can handle ground(P) for any first-order DLP program P

(see also Remark 4.2).

Theorem 10G (Soundness and completeness for general DLP). Let P be a
general DLP program, and← G a disjunctive goal. Then, there exists a winning
strategy in ΓP(← G) iff G is true in every minimal model of P.

Proof. Completeness. Assume G is true in every minimal model of P, and
therefore also in every model of P, in symbols P |= G. By the compactness
theorem of propositional calculus, there exists a finite subset PG ⊆ P such that
PG |= G. Specifically, G is true in every minimal model of PG, which allows us
to use Theorem 10F to obtain a winning strategy σG in ΓPG(← G). Observe
now that this very strategy is still winning in the “bigger” game ΓP(← G), since
the believer will never pick any of the additional rules, and therefore the course
of the game cannot change.

Soundness. Suppose we have a winning strategy σ for ΓP(← G). This can
only use a finite number of rules from P, which form a finite subset Pσ ⊆ P.
Obviously, σ is still winning in ΓPσ (← G). This means that G is true in every
minimal model of Pσ (by Theorem 10F again), and therefore in every model
of Pσ. Since there are no negations involved, G remains true in every model of
the superset P; specifically in every minimal one.

Corollary 10.33 (Soundness and completeness for first-order DLP). Let P be
a first-order DLP program, and C a positive ground clause. Then P |= C iff
there exists a winning strategy in Γground(P)(← C).

Proof.

P |= C ⇐⇒ C is true in every m.m. of P (Theorem 4B)

⇐⇒ C is true in every m.m. of ground(P) (Property 4.2)

⇐⇒ there is a winning σ in Γground(P)(← C) (Theorem 10G)

So far, we have studied model-theoretic semantics for all four languages, while game

semantics for all but DLPN. In the next chapter we will apply the tools we have

developed so far to fill this gap, and also obtain a new, different game for DLP, which

still provides equivalent semantics.

?

Chapter 11

Applications of (−)∨
on game semantics

In this chapter, we use the (−)∨ operator on the game semantics of LP and LPN

of Chapters 8 and 9 to obtain new, game-theoretic semantics for DLP and DLPN.

For DLP, the obtained game semantics is drastically different, albeit equivalent to

DLPG, and for DLPN, this appears to be its first game-theoretic semantics. For the

same reasons of simplicity that we outlined in the beginning of Chapter 7, we again

assume that all programs are clean in this chapter. And as there has been no formal

definition of a game semantics for infinite LPN programs, programs with negation are

also assumed to be finite.

11.1 A different game semantics for DLP

We pick the simplest of the games we have encountered, LPG, and apply the
(−)∨ operator on it. Following the definition, we have:

VLPG∨ = VLPG = B
MLPG∨ = P(MLPG).

We proceed following the definitions:

mLPG∨(P) = (mLPG)∨(P) = mLPG(D(P)),

aLPG∨(S)(Q) = (aLPG)∨(S)(Q) =
∧

S∈S

∨
q∈Q

aLPG(S)(q),

sLPG∨(D)(Q) = (sLPG)∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sLPG(P)(q).

Translating the last equation, we see that

sLPG∨(D)(Q) = T ⇐⇒
∧

P∈D(D)

∨
q∈Q sLPG(P)(q) = T

⇐⇒ for every P ∈ D(D), there exists a q ∈ Q,
such that sLPG(P)(q) = T

⇐⇒ for every P ∈ D(D), there exists a q ∈ Q,
such that there is a winning strategy for ΓLP

P (← q).

87

88 CHAPTER 11. APPLICATIONS OF (−)∨ ON GAME SEMANTICS

Easily, we can interpret these quantifiers as player moves, so that in the
LPG∨ game, Doubter begins by playing a definite instantiation P ∈ D(D)
(essentially what she chooses is a D-section). The following move of the Believer
is to choose an element of the goal q ∈ Q, and after this point, the players begin
playing the game ΓLP

P (← q).

Theorem 11A. The game semantics LPG∨ and the minimal model semantics
MM are equivalent.

Proof. We begin with the equivalence

sLPG = sLHM, (by Corollary 8.1)

on whose both sides we apply the (−)∨ operator and compute:

(sLPG)∨ = (sLHM)∨ (by Lemma 7.1)

= sMM (by Theorem 7B)

Using Theorem 10G, we obtain the following

Corollary 11.1. The game semantics LPG∨ and DLPG are equivalent.

11.2 An encoding of DLP to LP

Suppose now that we are given a finite DLP program D and a DLP goal
G := {g1, . . . , gm}. We outline here how we can encode both objects into ones
of LP. We will define an operator

encode : PDLP ×QDLP → PLP ×QLP,

so that if encode(D, G) = (P, g), we will then be able to use the game ΓLP
P (← g)

to obtain an answer for the initial DLP query G, with respect to the initial
program D.

Before diving into the definition of the encoding, note that since D is finite,
then so is D(D) := {P1, . . . ,Pn}. Now define

encode(D, G) , (P, g)

where

P := P1] · · ·] Pn ∪ restrictors(D, G) ∪ {definitizer(D, G)} ,
restrictors(D, G) ,

{
pi ← gij | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
,

definitizer(D, G) , g ← p1 ,,, · · · ,,, pn,

and where all atoms pi and g, are distinct and fresh, i.e., not appearing any-
where in D, G, or any of the Pi’s, while every occurrence of the atom gj in
the program Pi, gives rise to an occurrence of the “tagged” atom gij inside the
disjoint union

⊎
D(D).

Some explanations are due. Firstly, we take the disjoint union of the definite
instantiations of D, tagging each atom that appears in Pi with an i superscript,
as we have already seen for the gj ’s. Next, the rôle of the definitizer rule, is
to select a specific definite instantiation Pi ∈ D(D). On the other hand, for

11.3. A FIRST GAME SEMANTICS FOR DLPN 89

each instantiation, there are corresponding restrictors whose job is to restrict
the disjunctive goal into one of its disjuncts, a single atom.

Examining the game ΓLP
P (← g) will shed some light to this: The Opponent

begins by doubting g. Next, the Player is forced to play the only rule whose
head is g:

g ← p1 ,,, · · · ,,, pn.

Opponent know has to select a pi. This corresponds to her choice of a definite
instantiation of D. As we have seen, Player next gets to decide which element
gj ∈ G he wants to restrict to, and this is exactly what the restrictors are for:
Player will choose the rule pi ← gij . Opponent has no choice but to doubt the

only conjunct in the body of that rule, gij , and finally we have arrived in this
tagged atom, and so the game is successfully restricted within the rules of the
correspondingly tagged Pi.

Notice that in essence, the game just described is really the one of Sec-
tion 11.1, but without having to add those artificial rules that we did there:
it is the encoding that does their job instead.

11.3 A first game semantics for DLPN

As we have already mentioned, there appears to be no game semantics for
DLPN in the literature. In this section, we ameliorate this situation: we obtain
two game semantics by using the (−)∨ operator on LPNG and LPNGω.

According to its definition,

VLPNG∨ = VLPNG = V1, VLPNGω∨ = VLPNGω = Vω,
MLPNG∨ = P(MLPNG); MLPNGω∨ = P(MLPNGω).

Focusing on LPNGω, we have

mLPNGω∨(P) = (mLPNGω)∨(P) = mLPNGω (D(P)),

aLPNGω∨(S)(Q) = (aLPNGω)∨(S)(Q) =
∧

S∈S

∨
q∈Q

aLPNGω (S)(q),

sLPNGω∨(D)(Q) = (sLPNGω)∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sLPNGω (P)(q);

and similarly for LPNG∨.

Again, interpreting these in terms of game rules is straightforward: Oppo-
nent begins by playing a definite instantiation P ∈ D(D), Player then chooses
an element of the goal q ∈ Q, and after this point, the players begin playing
the game ΓLPN

P (← q) normally, and the outcome of their play in it becomes the
outcome of the play on the new game.

Theorem 11B. For finite DLPN programs, the game semantics LPNGω∨ and
the model-theoretic semantics MMω are equivalent.

Proof. Completely analogously to the proof of Theorem 11A, starting from the
equivalence

sLPNGω = sWFω , (by Theorem 9A)

90 CHAPTER 11. APPLICATIONS OF (−)∨ ON GAME SEMANTICS

we apply the (−)∨ operator on both sides, and compute:

(sLPNGω)∨ = (sWFω)∨ (by Lemma 7.1)

= sMMω (by Theorem 7C).

Since we can collapse any infinite-valued space into the three-valued V1, we
have chosen to present only the more general, infinite-valued semantics. But
if for any reason we want to restrict ourselves to only using the three-valued
space V1, we can easily obtain the analogous results.

@ Remark 11.1. The encoding we presented in Section 11.2 can be applied
mutatis mutandis for the case of DLPN programs, encoding them into LPN
ones. Note that since negations only occur inside the bodies of the Pi’s, the rôle-
switching moves may only be played once the play has already been restricted
to a specific definite instantiation Pi.

>

Part IV

Appendices

91

Appendix A

Lattices and Heyting algebras

Everything in this appendix can be found in standard texts on such subjects,
e.g., [DP02].

Definition A.1. Let L be a non-empty ordered set. L is a lattice iff both
x ∨ y and x ∧ y exist for all x, y ∈ L. L is a complete lattice iff

∨
S and

∧
S

exist for all S ⊆ L. We say that L has a one iff there is an element 1 ∈ L such
that x = x ∧ 1 for all x ∈ L, and a zero iff there is an element 0 ∈ L such that
x = x ∨ 0 for all x ∈ L. Other notations for these two elements are > and ⊥
respectively. If such two elements exist in a lattice, we call it bounded.

Definition A.2. Given a lattice (L;≤L), we form its dual lattice (L∂ ;≤L∂)
by defining

x ≤L∂ y ⇐⇒ y ≤L x.

Definition A.3. A lattice L is distributive iff for all a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Definition A.4. A complete lattice L is said to be completely distributive iff
for any doubly indexed family {xj,k}j∈J,k∈Kj ⊆ L,∧

j∈J

∨
k∈Kj

xj,k =
∨

f∈F

∧
j∈J

xj,f(j),

where F is the set of all choice functions f that choose for each j ∈ J , an
element f(j) ∈ Kj . That is,

F =
{
f : J →

⋃
j∈J

Kj | f(j) ∈ Kj

}
=
∏

j∈J
Kj .

Definition A.5. Let L be a complete lattice. k ∈ L is compact, if for every
S ⊆ L, there is a finite T ⊆ S, such that

k ≤
∨
S =⇒ k ≤

∨
T.

The set of all compact elements of L is denoted by K(L).

93

94 APPENDIX A. LATTICES AND HEYTING ALGEBRAS

Definition A.6. A complete lattice L is said to be algebraic if, for each a ∈ L,

a =
∨
{k ∈ K(L) | k ≤ a} .

Theorem A.7. Let L be a lattice. Then the following are equivalent:

(i) L is distributive and both L and L∂ are algebraic;

(ii) L is completely distributive and algebraic.

Proof is in [DP02, Theorem 10.29].

Definition A.8. Let H be a (complete) bounded lattice. H is a (complete)
Heyting algebra iff for every a, b ∈ H there is an element a→ b satisfying

c ≤ a→ b ⇐⇒ c ∧ a ≤ b

for every c ∈ H.

Property A.9 (Some equalities). Let H be a Heyting algebra. Then the fol-
lowing equalities hold between elements of H:

(i) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(iii) a⇒ (b ∨ c) = (a⇒ b) ∨ (a⇒ c)

(iv) (a ∨ b)⇒ c = (a⇒ c) ∧ (b⇒ c).

If in addition H is complete, the following equalities also hold:

(I) a ∧
∨
s∈S s =

∨
s∈S(a ∧ s)

(II) a ∨
∧
s∈S s =

∧
s∈S(a ∨ s)

(III) a⇒
∨
s∈S s =

∨
s∈S(a⇒ s)

(IV) (
∨
s∈S s)⇒ c =

∧
s∈S (s⇒ c).

References

[AB94] Krzysztof R. Apt and Roland Bol. Logic programming and nega-
tion: A survey. Journal of Logic Programming, 19:9–71, 1994.

[Acz77] Peter Aczel. An introduction to inductive definitions. In Jon
Barwise, editor, Handbook of Mathematical Logic, pages 739–782.
North-Holland, Amsterdam, 1977.

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria.
Full abstraction for PCF. Information and Computation,
163(2):409–470, December 2000.

[ALM09] Gianluca Amato, James Lipton, and Robert McGrail. On the alge-
braic structure of declarative programming languages. Theoretical
Computer Science, 410(46):4626–4671, 2009.

[AM99] S. Abramsky and G. McCusker. Game semantics. In H. Schwicht-
enberg and U. Berger, editors, Computational Logic: Proceedings
of the 1997 Marktoberdorf Summer School, pages 1–56. Springer-
Verlag, 1999.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2:297–347, 1992.

[AP91] Jean-Marc Andreoli and Remo Pareschi. Logic programming with
sequent systems. In Peter Schroeder-Heister, editor, Extensions
of Logic Programming, volume 475 of Lecture Notes in Computer
Science, pages 1–30. Springer Berlin Heidelberg, 1991.

[Apt90] Krzysztof R. Apt. Logic programming. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 493–
574. MIT Press, Cambridge, MA, USA, 1990.

[BM09] Filippo Bonchi and Ugo Montanari. Reactive systems, (semi-
)saturated semantics and coalgebras on presheaves. Theoretical
Computer Science, 410(41):4044–4066, 2009.

[BZ13] Filippo Bonchi and Fabio Zanasi. Saturated semantics for coal-
gebraic logic programming. In Reiko Heckel and Stefan Milius,
editors, Algebra and Coalgebra in Computer Science, volume 8089

95

96 REFERENCES

of Lecture Notes in Computer Science, pages 80–94. Springer Berlin
Heidelberg, 2013.

[Cla78] Keith Clark. Negation as failure. Logic and Databases, pages 293–
322, 1978.

[Cla79] Keith Clark. Predicate logic as a computational formalism. 1979.

[CM92] Andrea Corradini and Ugo Montanari. An algebraic semantics
for structured transition systems and its applications to logic pro-
grams. Theoretical Computer Science, 103(1):51–106, 1992.

[CPRW07] Pedro Cabalar, David Pearce, Panos Rondogiannis, and William
Wadge. A purely model-theoretic semantics for disjunctive logic
programs with negation. In Chitta Baral, Gerhard Brewka, and
John Schlipf, editors, Logic Programming and Nonmonotonic Rea-
soning, volume 4483 of Lecture Notes in Computer Science, pages
44–57. Springer Berlin / Heidelberg, 2007.

[DCLN98] Roberto Di Cosmo, Jean-Vincent Loddo, and Stephane Nicolet.
A game semantics foundation for logic programming. In Catuscia
Palamidessi, Hugh Glaser, and Karl Meinke, editors, Principles of
Declarative Programming, volume 1490 of Lecture Notes in Com-
puter Science, pages 355–373. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0056626.

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices
and Order (2. ed.). Cambridge University Press, 2002.

[Fit85] Melvin Fitting. A kripke-kleene semantics for logic programs. Jour-
nal of Logic Programming, 2(4):295–312, 1985.

[Fit99] Melvin Fitting. Fixpoint semantics for logic programming—a sur-
vey. Theoretical Computer Science, 278:25–51, 1999.

[Gel08] Michael Gelfond. Answer sets. In F. van Harmelen, V. Lifschitz,
and B. Porter, editors, Handbook of Knowledge Representation,
chapter 7. Elsevier, 2008.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model seman-
tics for logic programming. pages 1070–1080. MIT Press, 1988.

[GRW08] Chrysida Galanaki, Panos Rondogiannis, and William W. Wadge.
An infinite-game semantics for well-founded negation in logic pro-
gramming. Annals of Pure and Applied Logic, 151(2-3):70–88, 2008.
First Games for Logic and Programming Languages Workshop.

[HO00] J. M. E. Hyland and C.-H. Ong. On full abstraction for PCF:
I. Models, observables and the full abstraction problem; II. Dia-
logue games and innocent strategies; III. A fully abstract and uni-
versal game model. Information and Computation, 163:285–408,
2000.

[Hod09] Wilfrid Hodges. Logic and games. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Spring 2009 edition, 2009.

REFERENCES 97

[KMP10] Ekaterina Komendantskaya, Guy McCusker, and John Power.
Coalgebraic semantics for parallel derivation strategies in logic
programming. In Michael Johnson and Dusko Pavlovic, editors,
AMAST, volume 6486 of Lecture Notes in Computer Science, pages
111–127. Springer, 2010.

[KNR11] Vassilis Kountouriotis, Christos Nomikos, and Panos Rondogiannis.
A game-theoretic characterization of boolean grammars. Theoreti-
cal Computer Science, 412(12-14):1169–1183, 2011.

[KP96] Yoshiki Kinoshita and A. John Power. A fibrational semantics
for logic programs. In Roy Dyckhoff, Heinrich Herre, and Peter
Schroeder-Heister, editors, ELP, volume 1050 of Lecture Notes in
Computer Science, pages 177–191. Springer, 1996.

[KP11] Ekaterina Komendantskaya and John Power. Coalgebraic seman-
tics for derivations in logic programming. In Proceedings of the
4th international conference on Algebra and coalgebra in com-
puter science, CALCO’11, pages 268–282, Berlin, Heidelberg, 2011.
Springer-Verlag.

[KPS13] Ekaterina Komendantskaya, John Power, and Martin Schmidt.
Coalgebraic logic programming: from semantics to implementa-
tion. CoRR, abs/1312.6568, 2013.

[Kun87] Kenneth Kunen. Negation in logic programming. Journal of Logic
Programming, 4(4):289–308, 1987.

[LC00] Jean-Vincent Loddo and Roberto Di Cosmo. Playing logic pro-
grams with the alpha-beta algorithm. In Michel Parigot and An-
drei Voronkov, editors, LPAR, volume 1955 of Lecture Notes in
Computer Science, pages 207–224. Springer, 2000.

[Llo87] John Wylie Lloyd. Foundations of Logic Programming. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1987.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of
disjunctive logic programming. MIT Press, Cambridge, MA, USA,
1992.

[Lor61] Paul Lorenzen. Ein dialogisches konstruktivitätskriterium. In In-
finitistic Methods: Proceedings of the Symposium on Foundations of
Mathematics, Warsaw, 2–9 September 1959, pages 193–200. Perg-
amon Press, 1961.

[LT84] J. W. Lloyd and R. W. Topor. Making Prolog more expressive.
Journal of Logic Programming, 3:225–240, 1984.

[Lüd11] Rainer Lüdecke. Every formula-based logic program has a least
infinite-valued model. In Hans Tompits, Salvador Abreu, Jo-
hannes Oetsch, Jörg Pührer, Dietmar Seipel, Masanobu Umeda,
and Armin Wolf, editors, INAP/WLP, volume 7773 of Lecture
Notes in Computer Science, pages 155–172. Springer, 2011.

98 REFERENCES

[Min82] Jack Minker. On indefinite databases and the closed world assump-
tion, volume 138 of Lecture Notes in Computer Science. Springer-
Verlag, 1982.

[MN12] Dale Miller and Gopalan Nadathur. Programming with Higher-
Order Logic. Cambridge University Press, June 2012.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Sce-
drov. Uniform proofs as a foundation for logic programming. An-
nals of Pure and Applied Logic, 51:125–157, 1991.

[MS06] Dale Miller and Alexis Saurin. A game semantics for proof search:
Preliminary results. Electronic Notes in Theoretical Computer Sci-
ence, 155:543–563, 2006.

[Nic94] Hanno Nickau. Hereditarily sequential functionals. In Anil Nerode
and Yuri Matiyasevich, editors, LFCS, volume 813 of Lecture Notes
in Computer Science, pages 253–264. Springer, 1994.

[NR12] Christos Nomikos and Panos Rondogiannis. A game semantics for
intensional logic programming. Presented in Games for Logic and
Programming Languages (GaLoP) VII, Dubrovnik, Croatia, 2012.

[NV07] Jonty Needham and Marina De Vos. A games semantics of ASP.
In Véronica Dahl and Ilkka Niemelä, editors, Logic Programming,
volume 4670 of Lecture Notes in Computer Science, pages 460–461.
Springer Berlin Heidelberg, 2007.

[PR05] David Pym and Eike Ritter. A games semantics for reductive logic
and proof-search. In Dan R. Ghica and Guy McCusker, editors,
Games for Logic and Programming Languages (GALOP 2005),
University of Edinburgh, 2–3 April 2005, pages 107–123, 2005.

[Rei78] R Reiter. On closed world data bases. Logic and Databases, pages
55–76, 1978.

[RW05] Panos Rondogiannis and William W. Wadge. Minimum model se-
mantics for logic programs with negation-as-failure. ACM Trans.
Comput. Logic, 6(2):441–467, 2005.

[Tso10] Thanos Tsouanas. Semantic approaches to logic programming.
Master’s thesis, 2010.

[Tso13] Thanos Tsouanas. A game semantics for disjunctive logic program-
ming. Annals of Pure and Applied Logic, 164(11):1144–1175, 2013.

[Vää11] Jouko Väänänen. Models and Games. Cambridge series in advanced
mathematics. Cambridge University Press, 2011.

[vE86] M. H. van Emden. Quantitative deduction and its fixpoint theory.
Journal of Logic Programming, 3:37–53, 1986.

[vEK76] M. H. van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM, 23:569–574,
1976.

REFERENCES 99

[VGRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. J. ACM, 38(3):619–
649, 1991.

Index of symbols

−g−
D g E, 40
D g E , 40
φ1 g φ2, 40
σ1 g σ2, 76
τ1 g τ2, 74
τ1 g̈ τ2, 71

−|−−
P|φA, 37

P|φH, 38
φ|A, 37

π|φHq , 75

π|φH, 75

σ|φHq , 81

σ|φH, 82
At, 68
N(P), 83
TP , 4
ΓP(← G), 63∨

, 67
F, 7, 23
T, 7, 23
:=, 7
[−], 41, 63

P̂, 19
C(π), 76
++, 7
::, 7
ve, <e, 7
v, <, 7
s�n, 7
βqi
∗
, 69, 71, 80

| − |, 7
≡, 7, 68, 70

Tq, 77
HB(P), 21, 63
HM(P), 22, 38, 39
LHM(P), 22, 83
MM(P), 23, 38, 39
answerσ(π), 67, 77–79
body(φ), 17
cr(π), 77, 78
crσq , 77
ground(P), 16
ground(ρ), 16
head(φ), 17
projσq (π), 77
rmstall(τ), 66
sync(τ1, τ2), 72
β, 65

δ, δ , 65
π−, 68, 76–78
τ−, 7
,, 7
ε, 64, 67
P+, 63

101

General index

AJM games, 61
alpha-beta pruning algorithm, 52
answer

computed, 5
correct, 5

answer set programming, 6
ASP, 6

benefit of the doubt, 54, 82
body, 3
boolean grammar, 52

chain, 67
clause

Horn, 6
closed world assumption, 54
CNF, 16
coalgebraic semantics, 5
combination, 61

of synchronous plays, 70
combo move, 83
commutative diagram, 77, 79
completeness, 61, 83
computed answer, 5
constraint logic programming, 52
correct answer, 5
CWA, see closed world assumption

declarative programming, 6
declarative semantics, see denota-

tional semantics
decomposition, 76
denotational semantics, 21
description logic, 54
desugaring, 19
diagram

commutative, 77, 79

dialogue games, 5, 52
disjunctive combination, see com-

bination
DLP, 4

compatibility, 83
game

simplified, 61
game semantics

completeness, 84
soundness, 83

DLPN, 4

extensive operator, 68

first-order
language, 15, 28
program, 28

fixpoint semantics, 4, 29
functional programming, 61

game
LP, 61
LPN, 61
simplified DLP, 61

game semantics, 5, 51
DLPG, 82

goal
success, 22, see also semantics

grammar
boolean, 52

ground
atom, 16
formula, 16
term, 16

head, 3
Herbrand

103

104 GENERAL INDEX

least model, see also LHM(P)
model

least, 3, 51
Horn clause, 6

idempotent
operator, 68

inference rule
resolution, 4

SLD, 4
SLI, 4

knowledge representation, 54

language
first-order, see first-order lan-

guage
least Herbrand model, see Herbrand

model, 55
least upper bound, 67
limit, 67
linear logic, 6
logic program

syntax, 13
logic programming, 3

constraint, 52
Lorenzen dialogue games, 5, 52
LP, 4, 15, 55

denotational semantics, see also
least Herbrand model

game, 55, 61
game semantics, 82

completeness, 55
soundness, 55

LPN, 4
game, 61, 83

lub, see least upper bound

minimal model semantics, 51
Minker semantics, see minimal model

semantics
mip, see model intersection prop-

erty
model

Herbrand, see Herbrand model
minimal, 51
well-founded, 51, 83

model intersection property, 22
model-theoretic semantics, 4
monotone

answerσ(π), 68, 78
rmstall(τ), 66, 78
sync(τ1, τ2), 73
τ1 g τ2, 74
τ1 g̈ τ2, 72
operator, 68

move
combo, see combo move

notation, 7, 65, 68

open world assumption, 54
operational semantics, see procedu-

ral semantics
operator

extensive, 68
idempotent, 68
monotone, 68

OWA, see open world assumption

PCF, 61
play, see also preservation

combination
synchronous, 71

in sync with, see synchronous
preservation

of finiteness
σ|φHq , 82
σ1 g σ2, 80

of parity
sync(τ1, τ2), 73
τ1 g τ2, 74, 76, 79
τ1 g̈ τ2, 72

of plays
τ1 g τ2, 74
τ1 g̈ τ2, 72

of totality
σ|φHq , 81
σ1 g σ2, 80

of winning
σ|φHq , 82, 83
σ1 g σ2, 81, 84

procedural semantics, 4, 52
programming

answer set, 6
declarative, 6

proof search, 6

quasiplay, 64, 76

release, see also βqi
∗

GENERAL INDEX 105

resolution, 4
SLD, 4, 55
SLI, 4

rule
body, 3
head, 3

semantic web, 54
semantics

coalgebraic, 5
declarative, see denotational
denotational, 3, 21
fixpoint, 4, 29
game, 5, 51
minimal model, see minimal model

semantics
model-theoretic, 4
operational, see procedural
procedural, 4, 52
stable model, 6
well-founded, see well-founded

sequent calculus, 6
SLD resolution, 4, 55, see also pro-

cedural semantics
SLI resolution, 4
soundness, 61, 83
splitting, 61
stable model semantics, 6
strategy, see also preservation

combo-free, 83
success of a goal, see goal success
synchronization, see also sync
synchronous

combination, see combination
of synchronous plays

syntactic sugar, 19

total strategy, see also preservation
truth value space, 10
truth values, see also T, F

well-founded model, see model

~
~
~
~
~
~
:wq

On the Semantics of Disjunctive Logic Programs: Thesis summary

Programming paradigms. Programming languages come in different forms and flavors. Still, there are some
major paradigms of programming, that most languages can be seen to belong to one or another, or to even combine
features of more than one of them. Under this perspective, the two main families of languages are imperative and
declarative. Roughly speaking, in imperative languages we program by specifying how to reach a solution, in a way
that resembles how one would write down a cooking recipe. On the other hand, when programming in declarative
languages we define what the problem is and what is a solution of it, but we leave the step-by-step details (the how)
to the implementation of the language. Code in declarative languages tends to be more elegant and such languages
are also much better suited for reasoning about programs and proving useful properties. The two main paradigms
that fall under this family of languages are functional programming and logic programming. In the first, we program
by mathematically defining and evaluating functions; in the latter, a program consists of logic formulæ of the form
this ← that, meant to be read as “this holds if that holds”, or “to solve this problem, it suffices to solve that one”.

Syntax and semantics. A programming language is a two-sided coin, and to understand one and use it well, we
need to know both of its sides: its syntax and its semantics. Syntax dictates what constitutes a well-formed program
for a language: how expressions are formed, what symbols or words are allowed and where, etc. But what exactly is
the meaning of a correctly written program? Answering this question is the job of the language’s semantics, which
also come in different kinds, the three main ones being denotational, operational, and axiomatic. In denotational
semantics one usually defines and uses appropriate mathematical objects to denote meanings of expressions and
programs; without such a formalism we cannot hope to prove much about a program. For logic programs, the
traditional denotational semantics are model-theoretic, but recently game-theoretic semantics have been studied as
well. An operational semantics describes (either in a step-by-step fashion or in a so-called “big-step” style) the
execution of programs and is thus closer to the implementation of a language. Finally, axiomatic semantics specify
what effect the execution of statements and programs will have on a set of assertions that are assumed to hold before
we perform it.

Four logic programming languages. In this thesis, we study denotational semantics of four logic programming
languages: (1) LP which is the simplest case of logic programs; (2) DLP which extends LP by adding disjunctions (∨);
(3) LPN which extends LP by adding negations (∼); and (4) DLPN which allows both disjunctions and negations.
The following figure represents these extensions schematically:

∼

(−)∨

∨

∼
(−)∨

∨

LP

LPN DLP

DLPNDLPN

a ← b1 ,,, · · · ,,, bn (LP rule)

a1 ∨ · · · ∨ ak ← b1 ,,, · · · ,,, bn (DLP rule)

a ← b1 ,,, · · · ,,, bn ,,,∼c1 ,,, . . . ,,,∼cm (LPN rule)

a1 ∨ · · · ∨ ak︸ ︷︷ ︸
this

← b1 ,,, . . . ,,, bn ,,,∼c1 ,,, . . . ,,,∼cm︸ ︷︷ ︸
that

(DLPN rule)

The four logic programming languages studied in this thesis, and a representative pro-
gram rule for each of them. In color, some of the contributions outlined below.

Contributions. The three main contributions of this dissertation can be summarized as follows:

• An abstract framework for logic programming semantics is defined, and all semantic approaches that we study
are placed within this framework. In this process we define the general notion of a truth value space as an
appropriate algebraic structure that satisfies a set of axioms. The booleans form the canonical example of such
a space, but we need to consider much more general ones when dealing with negation. For this we define and
study an infinite family of spaces, parametrized by an ordinal number.

• A game semantics for LP has been known for quite a long time. In 2005, it was extended to a new one for the
language of LPN. Here a novel game semantics for DLP programs is developed in full detail and we prove that
it is sound and complete with respect to the standard, minimal model semantics of Minker. What is more, this
is done for infinite programs, which has the remarkable consequence that it provides a denotational semantics
even for first-order programs. Even though the game itself can be seen as an extension of the LP game, the
formalization and notation we have used is influenced by the games used in functional programming instead.

• We define a semantic operator (−)∨ which transforms any given semantics of a non-disjunctive logic pro-
gramming language to a semantics of the “corresponding” disjunctive one. We exhibit the correctness of this
transformation by proving that it preserves equivalences of semantics, and that the semantics it yields behave
as one would expect them to. We present some applications of this operator to obtain some new semantics for
disjunctive logic programming languages: notably, applying this method on the game semantics for LPN, we
obtain a game semantics for DLPN, filling the gap that remained to complete the game semantics part of the
picture sketched above.

Keywords: disjunctive logic programming; denotational semantics; game semantics; logic programming; theory of
programming languages.

