
A game semantics for disjunctive logic programming

Thanos Tsouanas1

Laboratoire de l’Informatique du Parallélisme,
École Normale Supérieure de Lyon

Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)
46 allée d’ Italie,

69364 Lyon cedex 07, France

Abstract

Denotational semantics of logic programming and its extensions (by allowing
negation, disjunctions, or both) have been studied thoroughly for many years.
In 1998, a game semantics was given to definite logic programs by Di Cosmo,
Loddo, and Nicolet, and a few years later it was extended to deal with negation
by Rondogiannis and Wadge. Both approaches were proven equivalent to the
traditional semantics. In this paper we define a game semantics for disjunctive
logic programs and prove soundness and completeness with respect to the min-
imal model semantics of Minker. The overall development has been influenced
by the games studied for PCF and functional programming in general, in the
styles of Abramsky–Jagadeesan–Malacaria and Hyland–Ong–Nickau.

Keywords: logic programming, disjunctive logic programming, game
semantics, logic programming semantics
2010 MSC: 03B70, 68N17, 68Q55, 91A40

Contents

1 Introduction 2

2 Syntax 7
2.1 Preliminaries . 7
2.2 Disjunctive combinations . 10
2.3 Restrictions and splitting . 12

3 Declarative semantics 13
3.1 LP—The least Herbrand model 13

Email address: thanos.tsouanas@ens-lyon.fr (Thanos Tsouanas)
URL: http://perso.ens-lyon.fr/thanos.tsouanas/ (Thanos Tsouanas)

1The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement #238381 (the Marie
Curie Initial Training Network in Mathematical Logic: MALOA).

Preprint submitted to Annals of Pure and Applied Logic June 24, 2013

3.2 DLP—Minimal models . 14
3.3 First-order programs . 16

4 Games 17
4.1 The LP game . 17
4.2 The simplified DLP game . 17
4.3 The DLP game . 19
4.4 Game semantics . 25

5 Plays and strategies 26
5.1 Plays . 27
5.2 Strategies . 34

6 Soundness and completeness 41

7 Conclusion 46

1. Introduction

No matter where one meets logic programming, or what the specific features
of the underlying language under investigation are, a logic program is always
some sort of set of rules of the form

this ← that,

read as “this holds, if that holds”, or “I can solve this, if I know how to solve
that”. Depending on what restrictions we impose on this (the head of the rule)
and that (the body), we enable or disable features of the resulting programming
language.

In its simplest form, a rule looks like this:

a ← b1 , · · · , bm, (LP)

where the commas on the right stand for conjunctions. The standard deno-
tational or declarative semantics for this kind of programs is provided by a
specific two-valued model, the so-called least Herbrand model. We will briefly
review this in §3, in an attempt to be self-contained; consult [10] or [20] for
further information. One extension is to allow negations to appear in bodies of
rules:

a ← b1 , · · · , bm , ∼c1 , · · · , ∼ck. (LPN)

By negation, we mean negation-as-failure; the semantics we have in mind here is
supplied by the many-valued well-founded model , defined in [37]. The extension
in which we are interested in this article is the appearance of disjunctions in
heads:

a1 ∨ · · · ∨ an ← b1 , · · · , bm. (DLP)

2

This enables us to express uncertainty and to derive ambiguous information.
Instead of a single least model, in this case, we use a set of minimal models
for the semantics, as defined in [28]. Disjunctive logic programs are extensively
studied in [22]. Finally, one can consider both extensions simultaneously, by
allowing both negations in bodies and disjunctions in heads:2

a1 ∨ · · · ∨ an ← b1 , · · · , bm , ∼c1 , · · · , ∼ck. (DLPN)

A satisfactory, infinite-valued, model-theoretic semantics for this extension was
recently defined in [6].

Unfortunately, in the logic programming literature, terminology is not as sta-
ble as one could hope. To contribute to this dismay, we introduce the following
four abbreviations that will hopefully help the reader:

LP: plain logic programs with neither negation nor disjunctions;

DLP: disjunctive logic programs—our focus;

LPN: logic programs with negation;

DLPN: disjunctive logic programs with negation—a future target.

The model-theoretic approach to semantics outlined above, is not the only
one that has proven itself worthy:

Fixpoint semantics. To construct the model-theoretic semantics of these lan-
guages, we use the immediate consequence operator (traditionally denoted by
TP) associated with each program P, and look at its fixpoints. In this develop-
ment of game semantics, however, we will not need to use this approach. An
excellent survey of fixpoint semantics for logic programming is [11].

Procedural semantics. The actual implementation of each of the above lan-
guages is usually given by refutation processes. Given a goal, the system tries
to disprove it by constructing a counterexample: a proof that the program, to-
gether with the goal is an inconsistent set of rules. Traditionally, such proofs
make use of some inference rule based on resolution. This might be, for ex-
ample, SLD resolution in the case of LP, and SLI resolution for DLP. In this
work, we do not touch this operational side of semantics either; see [5] for the
non-disjunctive and [22] for the disjunctive cases.

Before turning to game semantics, one should have a clear understanding
of the nature of the aforementioned methods. On one side, we have the deno-
tational, model-theoretic semantics and their fixpoint characterizations. These
provide us with a notion of correctness for every possible answer to a goal that

2What about disjunctions in bodies, or conjunctions in heads? It is an easy exercise to
show that this does not affect the programming language in any meaningful way; it only makes
the programmer happier. See Remark 2.3 for a solution.

3

we might give to our program. On the operational side, the procedural seman-
tics provide a construction of an answer to our question (the so-called computed
answer), and this answer has to be correct. Conversely, such a procedure is
expected to be able to derive all of the answers that the denotational seman-
tics considers correct. We then say that the procedural semantics is sound and
complete with respect to the denotational one.

Game semantics. Games made their debut in the logic programming scene
with [9], where we find the first informal description of a game in the logic
programming literature. But it was not until [8], that a game semantics was
systematically studied for the case of LP. It was there shown, that it is in fact
sound and complete with respect to SLD resolution. This is a rather involved
game, which stays close to the procedural semantics, and therefore directly
handles first-order programs, taking into account variables, function symbols,
substitutions, etc. Approximately a decade later, this game—or, to be fair, its
propositional version—was extended in [12], to cover negation for finite, propo-
sitional LPN programs. The LPN game semantics is proven to be equivalent
to an infinite-valued refinement of the well-founded model semantics (as de-
fined in [34]); it is a denotational game semantics. A couple of years after that,
two games to deal with DLP and DLPN (again from a denotational point of
view) were described informally in [35]. The history of denotational and game
semantics for these four versions of logic programming is summarized in Table 1.

In this article, a game semantics for DLP is formally defined, studied, and
proven correct:

Soundness and completeness of the DLP game semantics (Theorem 6F).
The game semantics of DLP is equivalent to the minimal model semantics, i.e.,
given any DLP program P, and any disjunction D,

D is true wrt the
DLP game semantics

⇐⇒ D is true wrt the
minimal model semantics.

Two key ideas are developed to prove the two directions of the above result:
combination (for completeness) and splitting (for both). In short, we begin with
a finite disjunctive logic program P, and split it in two new DLP programs P1

and P2, such that they are in a sense, “less disjunctive”. Now, strategies for
games in P can themselves be split to strategies for games in P1 and P2, and
vice versa: strategies for such games can be combined to form new strategies for
games in P. By repeated splitting, we eventually arrive at programs that are
not disjunctive at all (LP programs), which we know how to deal with since [8].
Finally, compactness will allow us to extend this result to the general case of
infinite DLP programs.

Why games? There are various benefits of defining a correct game semantics for
each of these languages. On the operational side, the LP game helps us prune
down the space of SLD derivations, by grouping them together using the much
smaller space of strategies. In fact, the alpha-beta algorithm was used in [23] to

4

Language Denotational semantics ⇐⇒ Game semantics
LP least Herbrand model [10] ⇐⇒ LP game [8]
LPN well-founded model [37] ⇐⇒ LPN game [12]
DLP minimal models [28] ⇐⇒ this article
DLPN ∞-valued minimal models [6] – –

Table 1: Development of game semantics for logic programming.

speed-up the resolution strategies even for the case of constraint logic program-
ming . On the denotational side, these games impart elegant characterizations
of these main versions of logic programming. As it turns out, starting from LP,
one only needs to add a couple of simple game-rules to its game to arrive at
DLP; the addition of a different one brings you to LPN. These rules are fairly
modular, so that it even makes sense to consider adding all of them simultane-
ously to deal with DLPN—although this has yet to be verified. Contrast the
simplicity of this approach to the difficulty of treating disjunction and negation
relying solely on model-theoretic tools. In addition, this kind of games is also
applicable to intensional logic programming (as explained in [31]), and even out-
side of the logic programming world, e.g., to boolean grammars (see [19]). For
an encyclopædic treatment of the use of games in logic, consult [15].

Outline. First, we formalize all the notions of DLP that we need (§2) and review
its denotational semantics (§3), staying in the traditional logic programming
world—no games. Then we define games (§4): with each DLP program P and
each goal ← G we associate a specific game ΓP(← G), and explain how we can
use it to derive semantics for the program. Plays and strategies are thoroughly
studied (§5), with the objective to define combination and splitting for both of
them. Lastly, we put every piece together to prove that the game semantics we
defined is sound and complete (§6) and conclude with some promising directions
for further research (§7).

Throughout the text, a general pattern emerges: (i) define a mathematical
object of DLP; (ii) proceed to define what it means to combine two such objects
into a weaker one (i.e., more disjunctive); (iii) define restriction of this object
to a stronger version of it (i.e., less disjunctive); (iv) use restriction to obtain
splitting. We will follow these steps, again and again.

Presentation. Be aware, that even though the DLP game developed here can be
thought of as another extension of the LP game, its formalization is drastically
different from those of the games of either LP or LPN, and appears to be novel in
the field of logic programming. It has been influenced instead by game semantics
in the style of Abramsky–Jagadeesan–Malacaria and Hyland–Ong–Nickau, used
for PCF and functional programming in general (see [1], [2], [16] and [30]).
Although we assume no such prior knowledge of this field, the initiated reader
should hopefully feel at home.

5

Related works. Some recent treatments benefit by incorporating tools from areas
such as proof theory and linear logic into logic programming:3 the proof search is
often presented in terms of sequent calculi, formulæ are not necessarily restricted
to Horn clauses of first-order logic, linear connectives are taken into account,
etc. [25], [26], [4], and [3], are some works along this line of research, just to
mention a few of them. What is more, games have been used successfully in
such settings as well: in [32] and [27], for example, two different approaches
for game semantics are presented in the context of computation-as-proof-search.
Category theory has also proven itself useful in providing semantics for logic
programming. For instance, [17] gives a coalgebraic semantics to variable-free
logic programs, which is extended to first-order programs in [18].

A different school of negation in logic programming, namely stable model se-
mantics (see [14]) gave rise to a relatively new kind of declarative programming:
answer set programming , or ASP (see [13]). It allows for disjunctions (besides
negations), among other things. Unsurprisingly, a game semantics approach is
being investigated as well: in [29], a game is briefly outlined for programs with
single-headed clauses, i.e., for the non-disjunctive fragment of ASP.

Before moving on to typographical and notational matters, it should be
emphasized that this small overview of logic programming and its semantics, is
far from being complete, and thus the reader should not rely on it in any way.

Notation. The Greek letters ϕ, ψ, and ρ will stand for rules, as well as for the
corresponding logic formulæ. Programs will usually be denoted by calligraphic
capital letters like P, Q, and R. Lowercase letters such as a, d, f , and p, will
always denote atoms, while uppercase such symbols will stand for sets of atoms.
For instance, D could be the set {d1, . . . , dn} which, as you shall shortly see,
is identified with the disjunction d1 ∨ · · · ∨ dn. We will use a monospaced font
when we show their appearances in programs. We use capital “script” letters for
families or sequences of sets of atoms: D could stand for ⟨D1, . . . , Dn⟩, each Di

being a set of atoms
{
di1, . . . , d

i
ki

}
. The truth values true and false are written

as T and F respectively; logical equivalence as ≡.
We will work with sequences a lot; we use ++ for concatenation and | · | for

length. We shall write s ⊑ s′ to indicate that the sequence s is a prefix of s′,
decorating it with an “e” in case s is of even length: s⊑e s

′ (note that ⊑e ⊆ ⊑).
Proper (even) prefixes will be shown as < (<e). s↾n stands for the sequence of
the first n elements of s, and it is equal to the whole sequence if |s| ≤ n. We will
frequently need to extract the longest, even, proper prefix of a sequence s; we
therefore introduce the notation s− for this, with the convention that it leaves

the empty sequence unaltered: ⟨ ⟩− df
= ⟨ ⟩. Influenced by lists in programming

languages, we use :: for the cons operator:

x :: s
df
= ⟨x⟩++ s.

3This one, does not.

6

Products of posets are equipped with the product order by default:

(s1, s2)⊑ (s′1, s
′
2)

df⇐⇒ s1 ⊑ s′1 and s2 ⊑ s′2.

As has been just demonstrated,
df
= and

df⇐⇒ are used to introduce the
definition of a function or symbol, while := is used to “let-bind” the variables
appearing on its left to the corresponding expressions that appear on its right
(or the other way around).

Further notational conventions will be introduced as soon as it is sensible to
do so. Thus far, we have what we need to begin.

2. Syntax

In this section, we build the theory of disjunctive logic programs that is
required to develop games, and also have our first hands-on experience with
combinations, restrictions, and splittings.

2.1. Preliminaries

We assume the existence of a countable set A of all the atoms. It is conve-
nient to represent disjunctions as sets of atoms and conjunctions as sequences of
disjunctions; when we do so, we speak of “DLP” disjunctions and conjunctions
respectively. For example, the formula a ∧ (b ∨ c) ∧ (c ∨ b) is represented by
⟨{a} , {b, c} , {b, c}⟩, in which the two occurrences of the set {b, c} are distinct.
Notice that under this convention all DLP conjunctions are actually formulæ in
CNF. Formally, we define:

Definition 2.1 (DLP). A DLP disjunction is a finite subset D ⊊ A. A DLP
conjunction is a finite sequence D of DLP disjunctions. A DLP clause is a
pair (H,D), in which the head H = {a1, . . . , an} is a DLP disjunction, and the
body D = ⟨D1, . . . , Dm⟩ is a DLP conjunction. If the head of a DLP clause is
non-empty we call it a DLP rule, while if it is empty and m = 1, a DLP goal .4

A DLP fact is a bodiless DLP clause. In logic programs, DLP rules will be
written as

a1 ∨ · · · ∨ an︸ ︷︷ ︸
head

← d11 ∨ · · · ∨ d1s1 , · · · , dm1 ∨ · · · ∨ dmsm︸ ︷︷ ︸
body

.

Such a rule is called proper if n > 1; it is clean, if sj = 1 for all 1 ≤ j ≤ m.
Therefore, a clean rule looks like this:

a1 ∨ · · · ∨ an ← b1 , · · · , bm.

4We have imposed the restriction m = 1 for goals. This will simplify the development
without any significant loss: to deal with a goal like ← D1 , · · · , Dm, one can simply add the
rule w ← D1 , · · · , Dm to the program, where w is a suitable fresh atom, and query w instead.

7

A clean DLP program is a countable set of clean DLP rules; it is proper , if at
least one of its rules is proper. If we drop the condition that the DLP rules
are clean we speak of a general DLP program. For obvious reasons we omit
the “DLP” prefix whenever no confusion arises. We have not specified what
those atoms in A really are. One may consider them to simply be propositional
variables without any further structure, just like in propositional calculus. In
this case, we have a propositional DLP program. Another possibility is to let
them be the atomic formulæ of a first-order language L, built by the predicates
and terms of L. We then call it a first-order DLP program in L.

▶ Example 2.1. Consider the following sets of rules:

P :=

p ← a

p ← b

a ∨ b ←

 , Q :=

®
e ∨ p ← f ∨ g , h

p ∨ q ← g , e ∨ r

´
, R :=

®
d ← f ∨ h

p ← g ∨ e

´
.

The DLP program P is proper and clean, Q is proper but not clean, and R is
neither proper nor clean. ◀

▶ Example 2.2. Here is a first-order DLP program:
p(X) ← a(X) , c(X)

p(X) ← b(X)

a(mary) ∨ b(mary) ←
c(mary) ←

 .

It is proper and clean. ◀

Remark 2.1 (Propositional vs first-order). Once we have reviewed the denota-
tional semantics of DLP programs in the next section, it will become apparent
that infinite, propositional programs are as powerful as finite, first-order ones.
Hence, for simplicity, we will be dealing with propositional DLP programs un-
less mentioned otherwise. To see how we end up with infinite programs, start
from a non-propositional, finite program P, containing at least one function
symbol, and replace each of its rules by all of its ground instances. What you
get is a countably infinite program with equivalent denotational semantics. The
definition and the example that follow will make this more precise.

Definition 2.2 (Ground). If a term, an atom, a formula, or a set of formulæ
of a first-order language L contains no variables, it is called ground . If it does,
then by replacing all of its variables with ground terms of L, we obtain a ground
instance of it. We also define:

ground(ϕ)
df
= {ϕ′ | ϕ′ is a ground instance of ϕ}

ground(P)
df
=

∪
{ground(ϕ) | ϕ ∈ P} .

8

▶ Example 2.3. Consider the program

E :=

®
even(0) ←

even(S(S(X))) ← even(X)

´
.

We compute:

ground(E) :=

even(0) ←
even(S2(0)) ← even(0)

even(S3(0)) ← even(S(0))

even(S4(0)) ← even(S2(0))

...

, E0 :=

e0 ←
e2 ← e0

e3 ← e1

e4 ← e2

...

,

where E0 is a propositional DLP program, equivalent to ground(E). ◀

Remark 2.2 (LP, DLP, and logic). There is an obvious mapping of program
rules into logic formulæ. For instance, the DLP rule

a1 ∨ · · · ∨ an ← d11 ∨ · · · ∨ d1s1 , · · · , dm1 ∨ · · · ∨ dmsm

corresponds to the formula(
d11 ∨ · · · ∨ d1s1

)
∧ · · · ∧

(
dm1 ∨ · · · ∨ dmsm

)
→ a1 ∨ · · · ∨ an.

This allows us to directly use some well-known jargon from Mathematical Logic:
we speak of models, theories, consistency, logical consequences, etc.

Definition 2.3. On the set of rules we define two operators head and body as
the projections

head((H,D))
df
= H,

body((H,D))
df
= D .

Remark 2.3 (Disjunctions in bodies). Following [22, §2.3], a disjunctive clause
is the universal closure of a logic formula like

L1 ∨ · · · ∨ Lk,

where the Li’s are literals. Separating them into positive and negative, and
omitting the quantifiers, this clause can be brought to the form

a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bm,

or, equivalently (by De Morgan) to

a1 ∨ · · · ∨ an ∨ ¬ (b1 ∧ · · · ∧ bm),

9

which, in turn, is logically equivalent to the (reverse) implication

a1 ∨ · · · ∨ an ← b1 ∧ · · · ∧ bm.

We adopt this as the logic programming notation of a clause, writing commas
instead of ∧. Coming this way, it is impossible for a disjunction to appear in
the body of a rule. Here though, we bypass this construction as it is often more
natural to express ideas using “unclean” rules.

When we are working with clean DLP programs, we can consider disjunctions
in bodies as “syntactic sugar”, thanks to the following transformation.

Definition 2.4 (P̂ and ϕ̂). Let P be a general DLP program. Then P̂ is the DLP
program that results if we replace every unclean rule ϕ = (H, ⟨D1, . . . , Dn⟩) of
P by all rules in

ϕ̂
df
= {(H,C) | C ∈ D1 × · · · ×Dn} .

We call P̂ the clean version of P.

Property 2.1. P̂ is clean and logically equivalent to P.

This is a simple case of the most general Lloyd–Topor transformation, which
transforms logic programs containing arbitrary formulæ in their bodies into
normal ones. See [21], [20, Chapter 4] or [22, pp. 188–189] for more details.

▶ Example 2.4. Here is the desugaring of Q from the previous example:

Q :=

®
e ∨ p ← f ∨ g , h

p ∨ q ← g , e ∨ r

´
ˆ7−→ Q̂ :=

e ∨ p ← f , h

e ∨ p ← g , h

p ∨ q ← g , e

p ∨ q ← g , r

 . ◀

In the sequel, whenever we refer to DLP programs, we mean general pro-
grams. However, all the fundamental program constructions that we investigate
easily preserve “cleanliness”; the one time that it really makes a difference is in
§6: there, we prove soundness and completeness for clean DLP programs first,
and then proceed to consider general DLP programs.

2.2. Disjunctive combinations

As mentioned in the introduction, given a sequence of disjunctions, we will
frequently want to disjunctively combine them into a single DLP disjunction.
In a similar fashion, we wish to combine DLP conjunctions, DLP rules, and
later even plays and strategies! Informally speaking, the idea is always the
same: we combine two or more “DLP things” into a single such thing, by using
some kind of logical disjunction. Thus, the resulting combination will be “more
disjunctive” than either of them. Even though we use the same notation for
all of the different kinds of disjunctive combinations, it will always be clear
what type of elements we are dealing with, and so no confusion should arise.

10

This overloaded notation is rather convenient and really pays off in terms of
readability.

In the definitions that follow, we introduce combination to deal with DLP
disjunctions, conjunctions, and rules.

Definition 2.5 (Combination of disjunctions). The (disjunctive) combination
of two DLP disjunctions is simply their union:

D ⋎ E df
= D ∪ E.

Definition 2.6 (Combination of conjunctions). Given two DLP conjunctions
D := ⟨D1, . . . , Dn⟩ and E := ⟨E1, . . . , Em⟩, their combination is another DLP
conjunction, logically equivalent to D∨E , and defined by the following equation:

D ⋎ E
df
= ⟨D1 ⋎ E1, . . . , D1 ⋎ Em, . . . , Dn ⋎ E1, . . . , Dn ⋎ Em⟩ .

Notice that the sequence on the right is empty iff any of D or E is empty.

Definition 2.7 (Combination of rules). The combination of two DLP rules
ϕ1 := (H1,D1) and ϕ2 := (H2,D2) is the rule defined by

ϕ1 ⋎ ϕ2 df
= (H1 ⋎H2,D1 ⋎D2).

Remark 2.4. It follows that ϕ1 ⋎ ϕ2 will not be a clean rule in general, unless
one of the ϕi’s is a fact. This is the only construction that does not preserve
cleanliness. However, we will only use it to extract the head of the combined rule
(which causes no trouble),5 and not to create new, potentially unclean rules.

▶ Example 2.5. Combining the following two rules

p ∨ q ← a ∨ b , c i.e., ({p, q} , ⟨{a, b} , {c}⟩)
p ∨ r ← d , e i.e., ({p, r} , ⟨{d} , {e}⟩)

we obtain

p ∨ q ∨ r ← a ∨ b ∨ d , a ∨ b ∨ e , c ∨ d , c ∨ e,

i.e., ({p, q, r} , ⟨{a, b, d} , {a, b, e} , {c, d} , {c, e}⟩). ◀

Hitherto we have defined combination for pairs of disjunctions, conjunctions,
and rules. We can generalize these definitions from pairs to sequences in a
straightforward way:

Definition 2.8 (Combining sequences). Given a sequence ⟨T1, . . . , Tn⟩ of DLP
disjunctions, conjunctions, or rules, we set

[⟨T1, . . . , Tn⟩]
df
= T1 ⋎ · · ·⋎ Tn,

5Notice that head(ϕ1 ⋎ ϕ2) = head(ϕ1) ⋎ head(ϕ2).

11

where ⋎ is understood to associate to the left, and ∅, ⟨∅⟩, or (∅, ⟨∅⟩) is its unit,
depending on whether we are combining DLP disjunctions, conjunctions, or
rules respectively.

An alternative presentation of the same definition uses recursion:

[⟨ ⟩] df
=

∅ (DLP disjunctions)

⟨∅⟩ (DLP conjunctions)

(∅, ⟨∅⟩) (DLP rules)

[⟨T1, . . . , Tn+1⟩]
df
= [⟨T1, . . . , Tn⟩]⋎ Tn+1.

2.3. Restrictions and splitting

Bypassing definitions of restriction and splitting for disjunctions and con-
junctions, we proceed to define those notions directly for rules and programs.

Definition 2.9 (Rule restriction). For any given rule ϕ and any set of atoms
A, we define the restriction of ϕ to A by

ϕ|A
df
= (head(ϕ) ∩A, body(ϕ)) .

It follows that a rule’s body is unaffected by restriction: body(ϕ) = body(ϕ|A).

Definition 2.10 (Program restriction). Let P be a DLP program and let ϕ ∈ P.

Then for any set of atoms A, we can define the restricted program P|ϕA by
restricting the rule ϕ of P to A:

P|ϕA
df
= (P \ {ϕ}) ∪ {ϕ|A} .

In words, P|ϕA is the program which is identical to P, with the exception that
the rule ϕ has been replaced by ϕ|A.

▶ Example 2.6. Let P be the proper DLP program

P :=

p ∨ q ∨ r ← f , g

p ∨ q ∨ r ← a , c

f ←

 ,

and let ϕ := p ∨ q ∨ r ← a , c. Here is a couple of restrictions of P with
respect to ϕ:

P|ϕ{p,q} :=

p ∨ q ∨ r ← f , g

p ∨ q ← a , c

f ←

 , P|ϕ{r} :=

p ∨ q ∨ r ← f , g

r ← a , c

f ←

 . ◀

We usually fix a disjunction H, and break it into logically stronger, less
disjunctive parts. For this we introduce the notion of a proper partition:

12

Definition 2.11 (Proper partition). Suppose that H is a set of atoms. Then a
tuple H := (H1, . . . , Hn) is a proper partition of H iff

(i) ∅ ̸= Hi ⊊ H for all i;

(ii) H = H1 ∪ · · · ∪Hn;

(iii) Hi ∩Hj = ∅ for all i ̸= j.

Once we know how to restrict a program, splitting it with respect to some
partition H becomes trivial:

Definition 2.12 (Splitting a program). Let ϕ be a proper DLP rule, and let
H := (H1, . . . , Hn) be a proper partition of its head. Then the splitting of P
with respect to ϕ over H is the tuple

P|ϕH
df
=
Ä
P|ϕH1

, . . . ,P|ϕHn

ä
.

▶ Example 2.7. The pair
Ä
P|ϕ{p,q},P|

ϕ
{r}

ä
of Example 2.6 is the splitting of P

with respect to ϕ over H := ({p, q} , {r}). ◀

We have formalized disjunctive logic programs, and are now ready to define
their semantics.

3. Declarative semantics

In this section, we define the denotational or declarative semantics for DLP
programs:6 we present the minimal model semantics of Minker (see [28] or [22]).
This is the de facto denotational semantics for disjunctive logic programs, and
will be the criterion for the soundness and completeness of our game semantics.
Before diving into the minimal model semantics of DLP, we quickly review the
denotational semantics of LP, i.e., the least Herbrand model. But we are by no
means thorough; consult [20] for more information.

3.1. Declarative semantics of LP—The least Herbrand model

Given a propositional logic program P, we define its Herbrand base HB(P)
to be the set of all atoms that appear in P. By a Herbrand interpretation I
of P, we mean any assignment of truth values ({T,F}) to the elements of the
Herbrand base. We say that I satisfies a rule p ← a1 , · · · , an, if it satisfies
the logic formula a1 ∧ · · · ∧ an → p. A Herbrand interpretation that satisfies
every rule of P is called a Herbrand model of P. It is customary in the logic
programming literature to identify interpretations with sets of atoms when the
underlying logic is two-valued: for any interpretation I,

a ∈ I
df⇐⇒ I(a) = T.

6We use the terms “denotational semantics” and “declarative semantics” interchangeably.

13

LP programs enjoy the following very useful property:

Model intersection property. The intersection of a non-empty family of
models is itself a model.

Observe now that for any program P at least one satisfying Herbrand inter-
pretation exists; to wit, the Herbrand base itself (i.e., the interpretation that
assigns the truth value T to every element of the Herbrand base). Therefore
the family of all Herbrand models HM(P) is always non-empty, which allows us
to define the least Herbrand model as the intersection of this family:

LHM(P)
df
=

∩
HM(P).

Definition 3.1 (Least Herbrand model semantics). Let P be an LP program.
The goal ← p succeeds if p ∈ LHM(P).

The following result, due to van Emden and Kowalski, justifies the use of
LHM(P) as the denotational semantics of P.

Theorem 3A. Let P be an LP program. Then

LHM(P) = {p ∈ HB(P) | p is a logical consequence of P} .

Proof. See [10, §5] or [20, Theorem 6.2]

This concludes our short summary of LP semantics. We proceed to DLP.

3.2. Declarative semantics of DLP—Minimal models

We summarize the minimal model semantics of disjunctive logic program-
ming, using the following DLP program as an example:

P :=

p ← a

p ← b

a ∨ b ←

 .

First, we compute its Herbrand models:

{a, p} , {b, p} , {a, b, p} .

If we try to follow the practice of LP, we will want to select the ⊆-least Herbrand
model to provide semantics for P. But none of them is least! The model
intersection property which LP programs enjoy, fails to hold in the presence of
disjunctions: ∩

HM(P) =
∩
{{a, p} , {b, p} , {a, b, p}} = {p} .

And {p} is not a model, since according to the third rule of our program, at
least one of the atoms a or b must be true. However, the first two models are

14

⊆-minimal. In fact, we can rely on the set {{a, p} , {b, p}} of minimal models to
obtain semantics for P.

Let P be a DLP program. We write MM(P) for the set of all minimal
Herbrand models of P. By the definition that follows, MM(P) provides the
denotational semantics for the DLP program P, which we call the minimal
model semantics à la Minker.

Definition 3.2 (Minimal model semantics). Let P be a DLP program. The
goal ← G succeeds if G is true in every minimal Herbrand model of P.

The equivalent of Theorem 3A for the disjunctive case is due to Minker:

Theorem 3B. Let P be a DLP program. A ground clause C is a logical conse-
quence of P iff C is true in every minimal Herbrand model of P.

Proof. See [28] or [22, Theorem 3.3]

▶ Example 3.1. Consider the DLP program

Q :=

p ← a

p ← b

b ← c

a ∨ c ←

 ,

compute its Herbrand models, and identify the ones that are minimal:

HM(Q) =
¶
{a, p}, {a, b, p} , {c, b, p}, {a, b, c, p}

©
,

MM(Q) = {{a, p} , {c, b, p}} .

Under the minimal model semantics, p and a ∨ c are both T, as

{a, p} |= p

{c, b, p} |= p
and

{a, p} |= a ∨ c
{c, b, p} |= a ∨ c,

while both a and b ∨ c are F because of

{c, b, p} ̸|= a and {a, p} ̸|= b ∨ c. ◀

Remark 3.1. In [22], another denotational semantics for DLP is defined, which
they call the least model-state semantics. However, they prove that the two
approaches are equivalent, so we stick with the minimal model semantics here.

Looking back at the definition of rule restriction, we can now see that it
implies the following property:

Property 3.1. The restriction of a rule ϕ is stronger than the original rule, in
the sense that any interpretation which satisfies ϕ|A must also satisfy ϕ. In the
same sense, restricting a DLP program makes it stronger.

15

3.3. Declarative semantics of first-order DLP

Even though we will base the development of our game semantics completely
on propositional DLP programs, we summarize below the corresponding notions
of the ones we described above, for the first-order case. They are presented in
detail in [22, §2.2, §2.4, §3.2]. The reader is advised to skip this subsection
on a first reading, coming back to it only before the very last result of §6:
Corollary 6.4.

Given a first-order DLP program P in some first-order language L, we define:

Definition 3.3. The Herbrand universe of P, HU(P), is the set of all ground
terms which can be formed by constants and function symbols of L. The Her-
brand base of P, HB(P), is the set of all ground atoms which can be formed
using the predicate symbols of L on the ground terms of HU(P).

Definition 3.4. A Herbrand interpretation of P is a mapping I that maps each
n-ary predicate symbol p of L to an n-ary relation on HU(P). If I is a model of
P we call it a Herbrand model of P.

Notice, that since the Herbrand models of a first-order logic program P are
constructed using only ground instances of rules in P, the following property is
immediate:

Property 3.2. Let P be a first-order DLP. Then P and ground(P) have the
same minimal models:

MM(P) = MM(ground(P)).

Remark 3.2. As long as we are studying denotational semantics, the above
property allows us to focus on infinite, propositional DLP programs. This is a
very common practice in the field of logic programming semantics. In fact, we as-
sume given an implementation of our DLP language (based on some operational
semantics—which, is immaterial). We then load our finite, first-order DLP pro-
gram P, and the implementation computes answers to our queries. Then, a
denotational semantics of the equivalent, propositional, and infinite DLP pro-
gram ground(P), provides a correctness criterion for those answers. Thus, we
avoid variables and function symbols at the cost of finiteness, but this is a fair
bargain, as no difficulties arise on the declarative side of semantics (see also [11]
for a relevant discussion).7

This completes our study of the syntax and the semantics of DLP; we now
have just enough tools to develop the DLP game, and use it to define the
game semantics of DLP. For an extensive study of the foundations of disjunctive
logic programming, the interested reader is once more referred to [22], whose
treatment far exceeds our needs.

7In exactly the same sense, when giving a fixpoint semantics, we only use the set of ground
instances of clauses in P to define TP (see [20] and [22]).

16

4. Games

In this section, we define the DLP game. First, we describe the LP game
in our propositional setting. Next, we present a simplified, informal version of
the actual game that we will use for DLP, and then, we proceed to make things
formal. Our objective is to use this game, in order to give a game semantics in
terms of the model-theoretic semantics outlined in the previous section.

4.1. An outline of the propositional LP game

The general picture, shared by all of the games that we consider here, is
based on Lorenzen dialogue games (see [24]). Two players (Doubter vs Believer)
argue over whether a given goal ← p succeeds or not.8 The player who doubts
it (Doubter) begins the game by saying:

Doubter: “Why p?”.

The defending player (Believer) must give a convincing argument of why he
thinks that p is true. He must select a program rule that has p as its head and
play it. For instance, selecting p ← a , b , c, he replies:

Believer: “p because a, b, and c.”,

to which Doubter must respond by doubting a specific atom from the body,
viz. a, b, or c. Selecting the second one, for example, she replies:

Doubter: “Why b?”.

The game continues in this manner, until a player cannot argue anymore, in
which case they lose the game. This means that either Believer played a rule
with an empty body (i.e., a fact) or Doubter played an atom which is not the
head of any program rule.

This conveys the essence of the games we use for logic programming; the
DLP game defined here is based on the same principles. We will denote believer
moves by β and doubter moves by δ, and refer to the game just described as
simply “LP game”.

4.2. The simplified DLP game9

This game extends the one above to deal with disjunctions. First of all, the
goal here is assumed to consist of a disjunction of atoms. The key difference
from the LP (and LPN) games is that in the DLP game the Believer can play
combo moves: he can use more than one rule to support his belief. What is
more, he can use not only rules from the given program, but also implicit rules,

8We agree to refer to Believer as a he, and to Doubter as a she. There is no particular
reason for the specific choice, but keeping their genres separate makes talking about them
easier. I first encountered this convention in [36], and I adopted it.

9This simplified game is based on a corrected version of the DLP game described in [35].

17

i.e., rules of the form a ← a. Thanks to rule combination, he can disjunctively
combine his selection of rules into one, say G ← D1 , · · · , Dn, and play it
against his opponent:

Believer: “G because D1, D2, . . . , and Dn.”;

and it is now Doubter’s turn to choose which disjunction Di to doubt:

Doubter: “Why Di?”.

And the game goes on.
To sum up, Believer is constantly challenged by Doubter to justify why he

believes some disjunction δ. He does that by ⋎-combining a sequence of DLP
rules to form a single rule β, such that the head of β is a subset of δ. Doubter
must then select which disjunction from the body of β she doubts, and so on.
Informally, this can be further summarized thus:

DLP game = LP game + implicit rules + combo moves.

The decision to allow the believer to include implicit rules not from the
program is backed up by the following example:10

▶ Example 4.1. Consider the DLP program

P :=

p ← a

p ← b

b ← c

a ∨ c ←

 .

For the goal ← p, two plays in this game could look like this:

π1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p

D0 : p

B0 : p ← a ∨ b

D1 : a ∨ b

B1 : a ∨ b ← a ∨ c

D2 : a ∨ c

B2 : a ∨ c ←

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, π2 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p

D0 : p

B0 : p ← a ∨ b

D1 : a ∨ b

B1 : b ← c

D2 : c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In both plays, Believer justifies the move B0 by combining the first two program
rules. Then, in π1, he combines the program rule b ← c with the implicit rule
a ← a, while in π2, he only uses program rules. You can easily verify that
without implicit rules it is impossible for him to win this game. ◀

10The need for implicit rules was Olivier Laurent’s objection to the correctness of the DLP
game as I describe it in [35], according to which the believer can only combine program rules.
I am grateful to him for spotting this mistake.

18

Conveniently enough, if we underline Doubter’s selections—as we have done
in the example above—we can condense each play by entirely omitting the lines
that correspond to her moves. For the sake of laziness, we will follow this
practice in the sequel.

Note that in both plays of Example 4.1, since every believer move has a body
with only one element in it, Doubter does not really have any choice to make;
she is simply following the lead of Believer. Here is an example where she can
actually enjoy the game as well:

▶ Example 4.2. The program now is

Q :=

p ← a , b

q ← a , b

a ← d , c

b ←
c ∨ d ← b

,

and the goal is ← p ∨ q. Here are two valid plays for this game:

π1 :=

∣∣∣∣∣∣∣
goal : ← p ∨ q

B0 : p ∨ q ← a ∨ a , a ∨ b , a ∨ b , b ∨ b

B1 : b ←

∣∣∣∣∣∣∣ ,
won by Believer, and

π2 :=

∣∣∣∣∣∣∣
goal : ← p ∨ q

B0 : p ∨ q ← a ∨ a , a ∨ b , a ∨ b , b ∨ b

B1 : a ← d , c

∣∣∣∣∣∣∣ ,
by Doubter. ◀

Having seen the basic idea of the simplified game, it is time to formalize
things: we define the real DLP game.

4.3. The DLP game

To study this game and prove it correct, we need to refine it substantially.
To be specific, believer moves will not be played as a single (combined) DLP
rule as was done in the simplified version. Instead, Believer will now specify the
exact sequence of rules that he combined to create his move. Likewise, Doubter
will not select a single disjunction from the combined move of Believer; instead
she will select a sequence of occurrences: one from each body of the rules in
β—which, we stress, is now a sequence of rules. Things become clearer and
formal after the definitions and the examples that follow.

Given a DLP program P and a goal clause← G, we will define the associated
DLP game, and denote it by ΓP(← G). It will always be a two-player game
(Doubter vs Believer). There are two player rôles: the doubter and the believer.

19

The statement is read as. . .

D “Why D?” or “I doubt D.”
E ← D1 , · · · , Dn “E because D1, . . . , and Dn.”
E ← “E because it is a fact.”

Table 2: How to read believer and doubter statements.

The rôles of the players never change throughout the game; this is why we simply
call the players Doubter and Believer.11

Doubter starts by doubting G, the body of the goal clause, and Believer tries
to defend it. A player who cannot play a valid move loses the game. Doubter
has the benefit of the doubt , which means that if she can keep doubting forever,
she wins. See Remark 4.7 (p. 25) for a discussion about the reasoning behind
this decision. Now let us be precise.

Definition 4.1 (Extended program). Given any set of DLP rules P, we can
extended it to P+, which includes all meaningful implicit rules. In detail,

P+
df
= P ∪ {a ← a | a ∈ HB(P)} .

Definition 4.2 (Moves). A doubter move δ is a sequence of occurrences of
disjunctions in bodies of DLP clauses, We refer to these occurrences as the
doubts of δ. A believer move β from P is a finite sequence of DLP rules from
the extended set P+. Given a move m, we call [m] the statement of the move
and refer to the sequence m as the justification of the statement. We say that
the elements of a believer move β that belong to P constitute the proper part of
the justification; the rest, the implicit. If |β| > 1 we call β a combo move.

Table 2 suggests how we can read moves aloud. Notice that they resemble
an actual dialogue. This motivates the following definition:

Definition 4.3 (Dialogue). A quasidialogue from P is a finite sequence

π := ⟨δ0, β0, δ1, β1, . . . ⟩ ,

such that:

• for all i, δi is a doubter move and βi a believer move (if they exist);

• for all i, if βi exists then head([βi]) ⊆ [δi];

• for all i > 0, if δi is ⟨D1, . . . , Dk⟩, and βi−1 is ⟨ψ1, . . . , ψk′⟩ then k = k′

and Dj ∈ body(ψj) for all 1 ≤ j ≤ k.

11This is not the case for the LPN game: to capture the third, “unknown” truth value of
the well-founded model, we need to allow ties in the game, as well as rôle-switching moves.
See [12] for more information on this.

20

It is a dialogue if it also satisfies:

• for all i, if βi exists then βi ∩ P ̸= ∅,
i.e., the believer always selects at least one rule from P.

Remark 4.1. Regarding the first restriction imposed on believer moves, one
could make the seemingly stronger demand that head([βi]) = [δi]. It is easy
to check, however, that this changes nothing in the game, since the believer can
bring up implicit rules to combine them with his move in case the subset was
proper. To see that he can still win exactly the same arguments, remember that
by definition, if there is at least one fact in a combination, the resulting rule is
also a fact.

Definition 4.4 (Play). A (quasi)play of ΓP(← G) is a (quasi)dialogue π from P

which, if non-empty, satisfies the additional property that [δ0] = G. We denote

the empty play by ε
df
= ⟨ ⟩.

Note that dialogues (and plays) are sequences and thus inherit the partial
orderings from ⊑ and ⊑e.

▶ Example 4.3. Consider the same program Q as in Example 4.2, repeated here
for convenience:

Q :=

p ← a , b

q ← a , b

a ← d , c

b ←
c ∨ d ← b

(the goal is still ← p ∨ q). The two plays that follow correspond to the ones we
considered previously. Here, the statements of the believer moves that use more
than one rule are explicitly shown in parentheses merely for the convenience of
the reader; they are not part of the actual plays.

π1 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p ∨ q

β0 : p ← a , b

q ← a , b(
[β0] : p ∨ q ← a ∨ a , a ∨ b , b ∨ a , b ∨ b

)
β1 : b ←

∣∣∣∣∣∣∣∣∣∣∣∣∣
is (still) won by Believer, and

π2 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

goal : ← p ∨ q

β0 : p ← a , b

q ← a , b(
[β0] : p ∨ q ← a ∨ a , a ∨ b , b ∨ a , b ∨ b

)
β1 : a ← d , c

∣∣∣∣∣∣∣∣∣∣∣∣∣
by Doubter. ◀

21

Property 4.1. Any dialogue π := ⟨δ0, β0, . . . ⟩ from P can be considered as a
play of ΓP(← G), where G := [δ0].

Remark 4.2 (Disallowing stalling). We have forced the believer to always in-
clude at least one rule from the actual program P, thus banning what we are
about to call “stalling” from our games. Still, this concept will be crucial for
our exposition: the introduction of plays in which stalling is allowed (i.e., quasi-
plays) will make a lot of the statements that follow easier to prove.

Definition 4.5 (Follow). We say that Doubter follows, if she has only one
possible valid move that she can play in response to a believer move β, i.e., if
for every rule ψ ∈ β, |body(ψ)| = 1. We denote such a follow move by β. In
symbols,

β
df
= ⟨the unique D ∈ body(ψ) | ψ ∈ β⟩ .

Definition 4.6 (Stalling). We say that a Believer is stalling , if he responds to
a doubter move δ by playing the sequence of implicit rules

δ
df
= ⟨a ← a | a ∈ [δ]⟩ .

In this way he is forcing the doubter to follow with δ, which has the same doubts
as δ again. Notice that despite the fact that the occurrences will be different,
the actual doubts will be the same, which is what really matters here. Easily,
stalling is a valid response to δ since head

([
δ
])

= [δ].

Remark 4.3 (Notation). Once more we have overloaded a symbol here, but
once more the end justifies the means: we increase readability with no possibility
of ambiguity, since the follow-bar can only be applied to believer moves, while
the stalling-bar only covers doubter moves. This also brings the handy double-
bar notation for the only possible reply to a stalling move, in which case the
follow is always defined. In addition, it is easy to verify the following cute,
bar-cancellation properties:

δ = δ and β = β.

Remark 4.4. For any doubter move δ, the move δ is equal to δ modulo a
change in occurrences: it contains exactly the same doubts. Therefore, it also
shares the same statement

[δ] =
î
δ
ó
.

If we remove stallings and their corresponding follow moves from a quasidia-
logue, we obtain an actual dialogue; and similar for plays. This is exactly what
the function rmstall (defined below) does; colloquially speaking, it removes the
“quasi-”. Note that if the original quasidialogue ended with a stall move, the
resulting dialogue will be of odd length.

Definition 4.7 (rmstall). Let τ be a quasidialogue from P. We define the
function rmstall recursively by cases on ℓ := |τ |:

22

Case 1: ℓ ≤ 1. Then either τ = ⟨ ⟩ or τ = ⟨δ⟩ for some doubter move δ. Both
alternatives contain no believer moves, and hence zero stallings; we set

rmstall(τ)
df
= τ.

Case 2: ℓ = 2. Then τ := ⟨δ, β⟩, so we set

rmstall(τ)
df
=

®
⟨δ⟩ if β = δ,

⟨δ, β⟩ otherwise.

Case 3: ℓ ≥ 3. Then τ = ⟨δ, β, δ′⟩++ τ ′, and we need to recurse:

rmstall(τ)
df
=

®
rmstall(δ :: τ ′) if β = δ,

⟨δ, β⟩++ rmstall(δ′ :: τ ′) otherwise.

Property 4.2 (Validity of rmstall). If τ is a quasidialogue from a program, then
rmstall(τ) is a dialogue from the same program; and if π is a quasiplay in some
game, then rmstall(π) is a play in the same game. In addition, rmstall leaves
dialogues and plays intact:

π dialogue or play =⇒ rmstall(π) = π

Property 4.3 (rmstall is ⊑-monotone).

τ ⊑ τ ′ =⇒ rmstall(τ)⊑ rmstall(τ ′).

We now define the important notion of a strategy. Roughly speaking, we
want a strategy to dictate how a believer should play against a doubter. If it
covers all potential doubter moves, we will call it total, and if it always leads to
victory, winning. Formally, we define:

Definition 4.8 (Strategy). A strategy σ in ΓP(← G) is a set of plays in ΓP(← G),
such that:

(i) σ ̸= ∅;

(ii) every play in σ has even length;

(iii) σ is closed under even prefixes (and therefore always contains ε):

π′ ⊑e π ∈ σ =⇒ π′ ∈ σ;

(iv) σ is deterministic: if π ∈ σ and π++ ⟨δ⟩ is a play, then there exists at most
one move β such that π ++ ⟨δ, β⟩ ∈ σ.

We will call a strategy combo-free if none of its plays contains combo moves; in
symbols, β ∈ π ∈ σ =⇒ |β| = 1.

Remark 4.5 (Strategies as posets). A strategy σ can be seen as a poset (σ,⊑e)
of even-length plays with a bottom element ⊥σ = ε.

23

Definition 4.9 (Total strategy). A strategy σ is called total , if for every play
π ∈ σ and every doubter response to it δ, there is at least one move β such that
π ++ ⟨δ, β⟩ is also in σ.

Siding with Believer, we give the following definition:

Definition 4.10 (Winning strategy). A strategy σ is called winning , if it is
total and finite.

Remark 4.6 (Infinite plays and limits). Let us pretend awhile that dialogues
(and plays) might be infinite. We should then change (among other things) the
definition of strategy to demand that it is also closed under limits—or, should
we? If we do so, nothing essential will change, as a correspondence between
such strategies and the ones we are using here is obvious:

• starting from a strategy with infinite plays, simply remove them—all their
finite, even prefixes are already included;

• starting from a strategy with only finite plays, add all limits (i.e., lubs of
⊑e-chains).

On the other hand, if we do not close under limits, we will end up distinguishing
between strategies like σ and σ∞, where:

σ := {⟨δ0, β0, . . . , δn, βn⟩ | n ∈ ω} ,
σ∞ := σ ∪ {

⊔
σ} .

Such a distinction could potentially be useful for some kind of ordinal extension
of games. But for reasons of elegance and simplicity we have chosen not to deal
with infinite dialogues altogether, as they are not needed for the development
of this game semantics of disjunctive logic programs.

Definition 4.11 (answerσ). Given a play π and a strategy σ in some game
ΓP(← G), the play answerσ(π) ∈ σ will be:

answerσ(π)
df
=

π if π ∈ σ,
π ++ ⟨β⟩ if there exists a β such that π ++ ⟨β⟩ ∈ σ,
undefined otherwise.

This is a well-defined partial function because σ is deterministic, and so in the
second branch, if such a β exists, it is necessarily unique. Furthermore, if σ
is total, answerσ(π) is undefined iff π− /∈ σ. Hence, if we stick with a total
strategy, it will always provide us with a next move, an answer to any doubter
move.

Property 4.4. The function answerσ behaves like a closure operator; i.e., when-
ever it is defined throughout the following statements, it satisfies them:

π ⊑ answerσ(π) (extensive),

π ⊑ π′ =⇒ answerσ(π)⊑ answerσ(π
′) (monotone),

answerσ(answerσ(π)) = answerσ(π) (idempotent).

24

The DLP game we have investigated is in a sense equivalent to the simplified
one that we described previously. This is a consequence of the logical equivalence
D ⋎ E ≡ D ∨ E and of the following proposition:

Proposition 4.5. Let D , E , and F be DLP conjunctions such that F ≡ D∨E .
Then for every disjunction F ∈ F there is some disjunction DF ∈ D and some
disjunction EF ∈ E such that DF ∪ EF ⊆ F .
Proof. Pick any disjunction F of F . Consider the interpretation α = A \ F .
By definition, an assignment that makes F false, must falsify F as well. But F
is logically equivalent to D ∨E , which means that both D and E are false under
α. Since they are both conjunctions, there is at least one element DF ∈ D that
is false, and similarly for an element EF ∈ E .

We have exposed every little detail that we will need in order to develop the
DLP game semantics in a formal mathematical setting. Let us do so.

4.4. Game semantics

Remember—our objective is to use games to provide denotational semantics
for disjunctive logic programs; in other words, to decide which goals should
succeed, i.e., which answers are correct. However, depending on the cleverness
of the players involved, for the same program P, and the same goal← G, Believer
might win one time, yet lose another. It therefore makes no sense to determine
the success of a goal by looking at a single play. Instead, we say:

Definition 4.12 (DLP game semantics). Let P be a DLP program. A goal
← G succeeds, if Believer has a winning strategy in ΓP(← G).

This is essentially the same definition as the LP game semantics.

Remark 4.7 (Benefit of the doubt). Why do we give the benefit of the doubt
to the doubter? Notice at once that if stalling was allowed, Believer would have
a winning strategy of “forever stalling”, for any goal. This would make every
disjunction derivable! But even with stalling forbidden, things can still go wrong
even without disjunctions:

▶ Example 4.4. Consider the following program

P :=

®
a ← a , b

b ←

´
and the goal ← a. A play in ΓP(← a) has to begin with Doubter doubting a,
to which Believer responds with a ← a , b. For as long as Doubter doubts a,
Believer always plays the same rule, and therefore plays will never end with
a winner. Had we given the benefit of the doubt to Believer, Doubter would
eventually have no choice but to switch and doubt b, at which point Believer
would win by playing the fact b ← . This describes a winning strategy for
Believer, but—this being a logic program—we most definitely do not want the
goal ← a to succeed, because of the denotational semantics:

a /∈ LHM(P) = {b} . ◀

25

Who has the benefit of the doubt is a decision similar to the closed/open
world assumptions (CWA/OWA) in knowledge representation languages. Giv-
ing it to the doubter resembles CWA, while giving it to no player resembles
OWA;12 it might be desired in some cases (e.g., description logics used for the
semantic web), but it is certainly not the stance we take in the world of logic
programming. For more information check [33] and [28].

Remark 4.8 (Backwards compatibility). In the model-theoretic side of seman-
tics, extensions of the language are backwards compatible: for DLP, a program
without disjunctions has a unique minimal model, viz. the least Herbrand model;
for LPN, the well-founded model of a program without negations is two-valued
and coincides with the least Herbrand model as well. Similar compatibilities
are desired and achieved in the game-theoretic side. We highlight that strictly
speaking, the DLP game is not directly compatible with the LP game in the
sense that it does not reduce to it when it is played on an LP program. The
reason behind this is that in the DLP game, believers can play what we have
called combo moves.13 Nevertheless, we will prove in Lemma 6.3 that whenever
there is a winning strategy in the DLP game of an LP program, then there is
a winning strategy in which the believer never plays more than one rule, and is
thus compatible with the LP game. In other words, the extra “combo-rule” of
the DLP game is unnecessary in the absence of disjunctions.

Earlier, we explained that we will need to combine, restrict, and split plays
and strategies. This is what we do next. Besides, it has been a while since we
last overloaded the ⋎ and | symbols.

5. Plays and strategies

In this section, we define the combination and splitting of both plays and
strategies. The main point here is that these constructions preserve all the
properties that we need.

Further notational conventions. To avoid tedious repetitions in what follows, we
hereby agree that P will always be a proper DLP program, ← G a goal clause,
and ϕ a proper DLP rule of P; H := (H1,H2) will be a proper partition of
H := head(ϕ), and (P1,P2) the corresponding splitting of P with respect to ϕ
over H. Naturally we will write just ϕ1 and ϕ2 for the rules ϕ|H1

and ϕ|H2

respectively. The variable q ranges over the size of the partition: q = 1, 2.14 We

12This would introduce strategies that are neither winning nor losing: they lead to ties.
13The reader may contrast this with the LPN game, which is directly compatible with the

LP game when no negations are present: the additional rule of LPN (rôle-switch) can only be
used by the believer, and only as an answer to a negative doubt. This cannot happen in an
LP program.

14There is nothing special about the number 2 here, and everything that we develop can
be stated mutatis mutandis for the case in which |H| is any larger number. However, 2 is as
large as we need.

26

use π and πq for dialogues or plays of ΓP(← G) and ΓPq
(← G) respectively; τ

and τq for “quasi-”. We remind the reader that we solely use β and δ for believer
and doubter moves respectively, and that strategies are usually denoted by σ.
In this setting, with this notation, we proceed to define combination, restriction,
and splitting of both plays and strategies.

5.1. Plays

Here we show how we can combine arbitrary plays from games of the split-
ting of a program to create a valid play in the original program’s game. The
construction we use is slightly technical but hopefully the intuition behind it
will be apparent to the reader, who will then have no problem appreciating and
accepting the details. We will also see how to work in the opposite direction:
starting from a play of a game of the combined program we can split it into two
plays, valid in the games of the less disjunctive, restricted programs.

5.1.1. Combining plays

As we are about to witness, while combining plays special care must be taken
because a believer move of a restricted play Pq might not be valid in P:

Definition 5.1 (Forbidden move). A believer move β of ΓPq (← G) is called
forbidden in ΓP(← G) iff it includes ϕq. In symbols,

Forbiddenq(β)
df⇐⇒ ϕq ∈ β.

Definition 5.2 (Release). Given a believer move βqi of ΓPq (← G), we define

βqi
∗
to be βqi after replacing instances of the forbidden rule ϕq by ϕ, so that it

becomes valid in ΓP(← G). We call βqi
∗
the release of βqi from Hq to H.

Property 5.1. The release of a move satisfies the following properties:

(i) βqi
∗
= βqi ⇐⇒ ϕq /∈ βqi ;

(ii) body
(
βqi

∗)
= body(βqi).

In order to justify believer moves in the combined play, we will need the
following proposition:

Proposition 5.2. Let β1 and β2 be two believer moves from P1 and P2 respec-
tively, and let β := β1

∗ ++ β2
∗. Then

head([β]) = head([β1]) ∪ head([β2]).

Proof. We compute

head([β1]) ∪ head([β2]) =
(∪

ψ∈β1

head(ψ)
)
∪
(∪

ψ∈β2

head(ψ)
)

=
∪

ψ∈β1++β2

head(ψ)

= head([β1 ++ β2])
∗
= head([β1

∗ ++ β2
∗])

= head([β]),

27

where the starred equality holds since

head(ϕ1) ∪ head(ϕ2) = H1 ∪H2 = head(ϕ).

First we define combination for what we call synchronous plays, as it is a lot
simpler. Once we have seen how to combine such plays, we proceed to give the
most general definition covering arbitrary plays.

Combining synchronous plays

The three games ΓP(← G), ΓP1(← G), and ΓP2(← G) would be identical ex-
cept that ϕ can only be part of believer moves of ΓP(← G), ϕ1 of those of
ΓP1(← G), and ϕ2 of those of ΓP2(← G). Since moves are sequences, it would
be delightful to simply concatenate the moves of π1 with those of π2 to obtain
a play in ΓP(← G). Doubter moves are no obstacles to this plan, but believer
moves can be troublesome: they may contain the rules ϕq, which are not al-
lowed in ΓP(← G). This problem is easy to solve if both moves include their
forbidden rules: we simply replace each of them by ϕ—a reasonable action,
since ϕ ≡ ϕ1 ⋎ ϕ2. To deal with this case, we begin with a key definition.

Definition 5.3 (Synchronous). Two quasiplays τ1 and τ2 in ΓP1(← G) and
ΓP2(← G) respectively are called synchronous (or in sync with each other) if
both Believers use their forbidden rules in the exact same turns. In symbols,

for all i ≤ min {|τ1| , |τ2|}, ϕ1 ∈ β1
i ⇐⇒ ϕ2 ∈ β2

i .

Property 5.3. If τ1 is in sync with τ2, then so is any prefix of τ1 with any
prefix of τ2.

Let π1 and π2 be plays of even length in the games ΓP1(← G) and ΓP2(← G)
respectively, and suppose that the two plays are synchronous. We will describe
a new play π1 ⋎̈ π2: the synchronous combination of π1 and π2 with respect
to ϕ over H. To better understand this construction, we first present the idea
informally, building the combined play turn by turn. We do so as follows: let

π1 :=
⟨
δ10 , β

1
0 , δ

1
1 , β

1
1 , . . .

⟩
π2 :=

⟨
δ20 , β

2
0 , δ

2
1 , β

2
1 , . . .

⟩
be the two given plays. We set

π1 ⋎̈ π2 df
= ⟨δ0, β0, δ1, β1, . . . ⟩ ,

where the symbols are defined as follows.
The first move is essentially determined by the game: Doubter starts with

δ0 := δ10 ++ δ20 ;

Assuming that ϕi /∈ βi0, Believer replies with

β0 := β1
0 ++ β2

0 ,

28

a valid move since head([β0]) ⊆ [δ0] (Property 5.1, Proposition 5.2). Doubter
must now select one occurrence from each rule-body in β0, and the moves δ11
and δ21 provide just that:

δ1 := δ11 ++ δ21 .

The game goes on until the turn i in which the believers of π1 and π2 both play
their forbidden rules ϕ1 and ϕ2 in their justifications. At this point, it is of
course Believer’s turn in the combined play π1 ⋎̈ π2. We set his move to be

βi := β1
i
∗
++ β2

i
∗
,

which is valid in ΓP(← G). Doubter’s turn: δ1i+1 and δ2i+1 consist of occurrences
from the rule-bodies of β1

i and β2
i respectively. Since releasing only affects heads

(Property 5.1(ii)), all occurrences in the rule-bodies of βqi are occurrences in the
rule-bodies of βqi

∗
as well. Therefore, she can copy the selections of δ1i+1 and

δ2i+1 by playing

δi+1 := δ1i+1 ++ δ2i+1.

She does so, and the game goes on until we run out of moves to combine.

Remark 5.1. We have cheated a bit, since we took for granted that the doubter
of π1 ⋎̈ π2 has in her possession two doubter moves δ1k and δ2k from π1 and π2
respectively. This will not hold if the plays have unequal lengths; in this case,
the combined play ends as soon as the shortest play ends.

We arrive at the following definition, general enough to handle quasiplays:

Definition 5.4 (Synchronous combination). Given two synchronous quasiplays

τ1 :=
⟨
δ10 , β

1
0 , δ

1
1 , β

1
1 , . . .

⟩
of ΓP1(← G),

τ2 :=
⟨
δ20 , β

2
0 , δ

2
1 , β

2
1 , . . .

⟩
of ΓP2(← G),

their synchronous combination τ1 ⋎̈ τ2 over ϕ with respect to H is the sequence

τ1 ⋎̈ τ2 df
= ⟨δ0, β0, δ1, β1, . . . ⟩

of length |τ1 ⋎̈ τ2| = min {|τ1| , |τ2|}, where the symbols involved are defined by

δi := δ1i ++ δ2i ,

βi := β1
i
∗
++ β2

i
∗
.

Proposition 5.4 (Validity of ⋎̈). Given two synchronous quasiplays τ1 and τ2
of ΓP1(← G) and ΓP2(← G) respectively, τ := τ1 ⋎̈ τ2 is a quasiplay in ΓP(← G).
It follows that if τ1 and τ2 do not stall simultaneously, τ will be a play of the
game ΓP(← G).

29

Proof. First, by the definitions of δi and βi, it is immediate that they are
doubter and believer moves respectively. Since each quasiplay τq is valid in
ΓPq

(← G), we know that

head
([
β1
i

])
⊆

[
δ1i

]
,

head
([
β2
i

])
⊆

[
δ2i

]
,

and so by taking unions on both sides and by using Proposition 5.2 we obtain

head([βi]) = head
([
β1
i

])
∪ head

([
β2
i

])
⊆

[
δ1i

]
∪
[
δ2i

]
=

[
δ1i ++ δ2i

]
= [δi] ,

which validates every believer move. Doubter moves are justified by the defini-
tion of release (which leaves bodies intact) as explained earlier in the sketchy
description of play combination (p. 28). To verify that τ is indeed a quasiplay,
observe that both τ1 and τ2 share the same goal with τ , and so δ0 = δ10 ++ δ20 is
a correct first move for a quasidialogue from P to be a quasiplay of ΓP(← G).

For the second claim, observe that a stalling move in τ1 ⋎̈ τ2 would imply
the existence of two simultaneously played stalling moves, one in τ1 and one in
τ2, against the hypothesis.

As plays never stall, we get the following property as a corollary:

Corollary 5.5 (Preservation of plays). The synchronous combination of two
synchronous plays is a play.

The definition of ⋎̈ immediately yields a couple of more preservation properties:

Property 5.6 (Preservation of parity). Let τ1 and τ2 be two synchronous quasi-
plays, both of even length. Then τ1 ⋎̈ τ2 will also have even length.

Property 5.7 (⋎̈ is monotone). Let τ1 and τ2 be two synchronous quasiplays.
Then for any τ ′1 ⊑ τ1 and any τ ′2 ⊑ τ2 we have τ ′1 ⋎̈ τ ′2 ⊑ τ1 ⋎̈ τ2.

So far, so good. Not every pair of plays is synchronous though, which brings
us to the next topic.

Combining arbitrary plays

Starting with two arbitrary quasiplays τ1 and τ2, we build two new, syn-
chronized quasiplays τ̇1 and τ̇2 by inserting pairs of stall–follow moves on the
turns in which one believer uses their forbidden rule but the other does not,
leaving the rest of the moves intact. Now we can simply combine τ̇1 with τ̇2. It
is exactly this idea that we exploit to extend the definition of τ1 ⋎̈ τ2 to cover
asynchronous plays: synchronize first, then combine.

Definition 5.5 (Synchronization). Let τ1 and τ2 be two quasidialogues from
P1 and P2 respectively, and let ℓ1 and ℓ2 be their lengths. We recursively define
their synchronization sync(τ1, τ2) by cases depending on ℓ := min{ℓ1, ℓ2}.

30

Case 1: ℓ < 2. In this case, there are no believer moves at all; and they are
the only ones that can cause asynchronicity. Hence, any such pair is trivially
synchronous:

sync(τ1, τ2)
df
= (τ1, τ2) .

Case 2: ℓ ≥ 2. Then τ1 := ⟨δ1, β1⟩++ τ ′1 and τ2 := ⟨δ2, β2⟩++ τ ′2, and we set:

sync(τ1, τ2)
df
=

(⟨
δ1, δ1

⟩
++ rec1, ⟨δ2, β2⟩++ rec2

)
if (a),(

⟨δ1, β1⟩++ rec1,
⟨
δ2, δ2

⟩
++ rec2

)
if (b),(

⟨δ1, β1⟩++ rec1, ⟨δ2, β2⟩++ rec2
)

if (c),

where rec1 and rec2 wrap the recursive calls

(rec1, rec2) :=

sync
Ä
δ1 :: β1 :: τ

′
1, τ

′
2

ä
if (a),

sync
Ä
τ ′1, δ2 :: β2 :: τ

′
2

ä
if (b),

sync(τ ′1, τ
′
2) if (c),

all according to the subcases: (a) ϕ1 ∈ β1 and ϕ2 /∈ β2; (b) ϕ1 /∈ β1 and ϕ2 ∈ β2;
(c) otherwise.

Remark 5.2 (Dependencies). Even though we have not incorporated ϕ1 and ϕ2
into the symbol sync of synchronization, we stress that it does, in fact, depend
on both of those rules: it uses them to determine the (a)–(c). Since we have
fixed ϕ, ϕ1, and ϕ2 into our notation, however, we allow ourselves to simply use
sync instead of an excessively precise name like syncϕ1,ϕ2

. The same is true for
various symbols that we use, such as ⋎ and ∗.

Proposition 5.8. Synchronization is a well-defined, total operation.

Proof. Observe that on every recursive call of sync both of its arguments are
themselves quasidialogues from P1 and P2; and so it makes sense to recurse on
them. Since sync is defined by recursion, we must be careful to ensure that it
terminates on every input. Note that on every recursive call of case 2 (ℓ ≥ 2),
the sum of the lengths of the arguments decreases: by 2 in subcases (a)–(b),
and by 4 in (c). Eventually, at least one of them will become short enough and
sync will reach case 1 (ℓ < 2), which contains no recursive calls.

One can easily verify that synchronization behaves as expected:

Property 5.9 (Validity of synchronization). Let (τ̇1, τ̇2) := sync(τ1, τ2). Then

(i) the pair (τ̇1, τ̇2) is synchronous;

(ii) if (τ1, τ2) happens to be synchronous, then sync(τ1, τ2) = (τ1, τ2);

(iii) rmstall(τ̇q) = rmstall(τq);

31

(iv) sync never produces two stalling moves in the same turn.

Proposition 5.10 (Preservation of parity). If τ1 and τ2 have even lengths, then
so do the elements of sync(τ1, τ2).

Proof. This is immediate by the very definition of sync, which generates its
output sync(τ1, τ2) incrementally by pairs of moves, while consuming pairs of
moves from its inputs τ1 and τ2. Thus, if both of its inputs are of even length,
the same will be true for its outputs.

Proposition 5.11 (sync is monotone). Let τ ′1 and τ ′2 be two quasidialogues, and
let τ1⊑ τ ′1 and τ2⊑ τ ′2. Then sync(τ1, τ2)⊑ sync(τ ′1, τ

′
2). Moreover, if τ1 < τ ′1 and

τ2 < τ ′2, then sync(τ1, τ2) < sync(τ ′1, τ
′
2).

Proof. Just like in the previous proof, we only need to observe how synchro-
nization really works. In fact, the construction of sync(τ1, τ2) must end with a
call to case 1 of its definition, with either ℓ = 0 or ℓ = 1. In either case, extend-
ing any of τ1 or τ2 results in an extension of the corresponding synchronized
quasidialogue.

We know how to combine synchronous plays; and we know how to synchro-
nize asynchronous plays. Compose the two and behold: a method to combine
arbitrary plays. Just as in the synchronous case, we state the definition in its
most general form, which is able to handle quasidialogues.

Definition 5.6 (Combination of quasidialogues). Let τ1 and τ2 be two quasidi-
alogues from P1 and P2 respectively. We define their combination τ1 ⋎ τ2 by
composition:

⋎ df
= ⋎̈ ◦ sync.

In other words,

τ1 ⋎ τ2 df
= τ̇1 ⋎̈ τ̇2,

where (τ̇1, τ̇2) := sync(τ1, τ2).

Remark 5.3. By Property 5.9(ii), ⋎ is compatible with ⋎̈, in the sense that it
yields the same output in case its input is synchronous.

Remark 5.4 (End of τ1 ⋎ τ2). According to the definitions of synchronization
and syncronous combination, the combined quasidialogue τ1 ⋎ τ2 ends exactly
when we reach the final move of either τ1 or τ2 (whichever comes first).

By defining the general combination as a composition of sync and ⋎̈, we
readily get their composable properties as corollaries:

Corollary 5.12 (Validity of combination). Given two (quasi)dialogues τ1 and
τ2 from P1 and P2 respectively, their disjunctive combination τ1⋎τ2 is a (quasi)-
dialogue from P.

Corollary 5.13 (Preservation of plays). If τ1 and τ2 are two (quasi)plays in
ΓP1(← G) and ΓP2(← G) respectively, then τ1 ⋎ τ2 is a (quasi)play in ΓP(← G).

32

Corollary 5.14 (Preservation of parity). If π1 and π2 have even length, then
so does π1 ⋎ π2.

Corollary 5.15 (⋎ is monotone). Let π′
1 and π′

2 be two dialogues, and let π1⊑π′
1

and π2 ⊑ π′
2. Then π1 ⋎ π2 ⊑ π′

1 ⋎ π′
2. Moreover, if π1 < π′

1 and π2 < π′
2, then

π1 ⋎ π2 < π′
1 ⋎ π′

2.

Remark 5.5 (Losing is not preserved). Even though Doubter may be victorious
in two plays, in the combined version she might not be so. As a counterexample,
consider the following program and splitting, in which Doubter wins both π1
and π2 (i.e., Believer cannot play a valid response to either plays) and yet she
does not win in the combined play:

P :=

p ← a

p ← b

a ∨ b ←
c ∨ d ←

 ⇝

á
P1 :=

p ← a

p ← b

a ∨ b ←
c ←

 , P2 :=

p ← a

p ← b

a ∨ b ←
d ←

ë

and the plays

∣∣∣∣∣ goal : ← p

β1
0 : p ← a

∣∣∣∣∣︸ ︷︷ ︸
π1

⋎
∣∣∣∣∣ goal : ← p

β2
0 : p ← b

∣∣∣∣∣︸ ︷︷ ︸
π2

=

∣∣∣∣∣∣∣∣∣∣
goal : ← p

β0 : p ← a

p ← b

[β0] : p ← a ∨ b

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
π

.

Notice that Believer cannot move in neither of the starting plays, but he can
certainly move in their combination by playing the rule a ∨ b ← . However,
as we will later see, such misbehaviors are evaded if the plays πq come from a
strategy splitting; the impatient can read Corollary 5.23 (p. 39).

Remark 5.6 (Combining goals). When combining plays, their common goal
← G does not really have to be all that common. We can combine a play in
ΓP1(← G1) with a play in ΓP2(← G2) to get a new play in ΓP(← G), where
G := G1 ∨ G2. To do so, we first extract plays in ΓP1(← G) and ΓP2(← G) by
altering only the first move in each play so that it is restricted to Gq; then we
combine. But we will not need to do such a thing in this work.

We have seen how to combine plays; now it is time to restrict and split them.

5.1.2. Restricting and splitting plays

Definition 5.7 (Play restriction). Suppose that π is a play and consider the
sequence obtained by restricting every believer move in π that contains ϕ to an
identical move in which ϕ has been restricted to Hq. We denote this sequence

by π|ϕHq
and call it the restriction of the play π to Hq with respect to ϕ.

33

Theorem 5A. For any play π of ΓP(← G), its restriction πq := π|ϕHq
is a valid

play in ΓPq (← G).

Proof. Note that the only alteration performed leaves all bodies intact, so
that every doubter move remains valid. The only case where a head is altered is
when a believer move β of π includes the forbidden rule ϕ. Denoting by βq the
corresponding believer move of πq, it is evident that head([β

q]) ⊆ head([β]) so
that in both plays, every believer move is valid as well.

Naturally we define splitting as a pair of restrictions:

Definition 5.8 (Play splitting). Given a play π of ΓP(← G), the play splitting
of π with respect to ϕ over H is the pair

π|ϕH
df
=
Ä
π|ϕH1

, π|ϕH2

ä
.

Thanks to Theorem 5A, these plays are indeed valid in the corresponding games.

After all this work on plays, strategies are next; but we have done most of
the hard work in this section, so that the following one will be a breeze.

5.2. Strategies

In the previous section we defined combination, restriction, and splitting for
plays in a given game, and proved the correctness of these definitions. Now we
will do the same for strategies, keeping the same notation that we agreed upon.
The combination and the splitting of strategies lie at the hearts of our proofs of
completeness and soundness respectively.

5.2.1. Combining strategies

Combination of plays can be extended to strategies in a straightforward way:

Definition 5.9 (Combination of strategies). Given two strategies σ1 and σ2 in
ΓP1(← G) and ΓP2(← G) respectively, we define their combination

σ1 ⋎ σ2 df
= {π1 ⋎ π2 | π1 ∈ σ1 and π2 ∈ σ2} .

Definition 5.10. Given a play π ∈ σ := σ1⋎σ2, we call the elements of the set

C(π)
df
= {(π1, π2) ∈ σ1 × σ2 | π1 ⋎ π2 = π}

the creators of π from σ1 and σ2. Equipped with the product order induced by
either ⊑ or ⊑e, the set C(π) becomes a poset; and as we are about to see, it
always has a least element: a pair which we naturally call the shortest creators
of π from σ1 and σ2. Note that the two orderings ⊑ and ⊑e coincide in this
poset since all plays involved come from strategies, and therefore are of even
length.

We will now prove an important “decomposition” property, which essen-
tially allows us to reverse play-combination in case the two plays come from
appropriate strategies.

34

Lemma 5.16 (Reversibility of combination). Given a play π ∈ σ := σ1 ⋎ σ2,
we can extract in a unique way, two synchronized quasiplays τ1 and τ2, each of
length |π|, such that τ1 ⋎̈τ2 = π and both τq agree with σq, i.e., rmstall(τq) ∈ σq.

Proof. Corollary 5.14 guarantees that |π| is even, which allows us to prove the
lemma by induction on ℓ := |π| / 2:

Base: (ℓ = 0). Trivially, (⟨ ⟩ , ⟨ ⟩) is the pair that we seek.
Induction step: (ℓ = n+ 1). Let

π := ⟨δ0, β0, . . . , δn, βn⟩ .

By the induction hypothesis, we know that there are two unique, synchronized
quasiplays

τ ′1 :=
⟨
δ10 , β

1
0 , . . . , δ

1
n−1, β

1
n−1

⟩
τ ′2 :=

⟨
δ20 , β

2
0 , . . . , δ

2
n−1, β

2
n−1

⟩
which combine into π− and agree with the corresponding strategies. Notice
that if (τ1, τ2) satisfies the requested properties for π, then (τ−1 , τ

−
2) satisfies

them for π−, so that τ−1 = τ ′1 and τ−2 = τ ′2. This guarantees that the following
construction is the only one possible. We need to determine δqn and βqn. Since π
is a play, the doubter move δn is either the first move (n = 0), or it consists of
doubts from the bodies of the last believer moves in τ ′1 and τ ′2 (n > 0). In the
first case, we set δqn := δn, while in the second one, we split it in a unique way
in two parts,

δn := δ1n ++ δ2n,

such that δqn is a valid doubter response to τ ′q. We now use these δqn to obtain the
corresponding believer moves βqn

∗. For this we appeal to the fact that σq (being
deterministic) can have at most one next-move for the play rmstall

(
τ ′q ++ ⟨δqn⟩

)
,

and we know that it has at least one since π ∈ σ1 ⋎ σ2:

βqn :=
(
answerσq ◦ rmstall

) (
τ ′q ++ ⟨δqn⟩

)
.

Note that as this is an answer from σq, the quasiplay τ ′q ++ ⟨δqn, βqn⟩ remains in
agreement with it.

Definition 5.11 (Projections of plays). We call the quasiplay τq of the above
lemma the projection of π on σq and denote it by projσq

(π).

By their construction, projections satisfy the following property:

Property 5.17. Given any π ∈ σ := σ1 ⋎ σ2,

projσq

(
π−) = Äprojσq

(π)
ä−

.

In other words, denoting by Tq the sets of quasiplays in ΓPq (← G), the diagram
in Figure 1 commutes.

35

T1 σ1 ⋎ σ2 T2

T1 σ1 ⋎ σ2 T2

projσ1oo
projσ2 //

projσ1

oo
projσ2

//

−

��
−

��
−

��

Figure 1: Commutative diagram for Property 5.17.

A link between projections and shortest creators is revealed: starting with π
as above, first use Lemma 5.16 to obtain the quasiplay projections of π. Then,
using rmstall, remove all existing stall–follow moves; and finally, in case the
quasiplay ended in a stall move, appeal to the strategy’s totality to append
the appropriate answer from σq. Following these steps, one actually obtains
the shortest creators of π from σ1 and σ2. This will be clarified shortly in a
lemma—but first, a definition that we will need:

Definition 5.12. Let π ∈ σ := σ1 ⋎ σ2. We define the function crσq : σ⇀σq as
the composition

crσq

df
= answerσq ◦ rmstall ◦ projσq

,

and simply write

cr(π)
df
= (crσ1(π), crσ2(π))

for the function cr : σ ⇀ σ1 × σ2. Both functions will turn out to be total.

Lemma 5.18. Let π ∈ σ := σ1 ⋎ σ2. Then

cr(π) = minC(π).

Proof. Let π := ⟨δ0, β0, . . . , δn, βn⟩ ∈ σ1 ⋎ σ2 and pick any pair of creators
(π1, π2) ∈ C(π), so that π1 ⋎ π2 = π. We will show that cr(π) ⊑e (π1, π2). Set
(τ1, τ2) := sync(π1, π2), and write

τ1 :=
⟨
δ10 , β

1
0 , δ

1
1 , β

1
1 , . . . , δ

1
n1
, β1
n1

⟩
τ2 :=

⟨
δ20 , β

2
0 , δ

2
1 , β

2
1 , . . . , δ

2
n2
, β2
n2

⟩
.

By definition, π = τ1 ⋎̈ τ2, so that

π =
⟨
δ10 ++ δ20︸ ︷︷ ︸
δ0

, β1
0
∗
++ β2

0
∗︸ ︷︷ ︸

β0

, δ11 ++ δ21︸ ︷︷ ︸
δ1

, β1
1
∗
++ β2

1
∗︸ ︷︷ ︸

β1

, . . . , δ1n ++ δ2n︸ ︷︷ ︸
δn

, β1
n
∗
++ β2

n
∗︸ ︷︷ ︸

βn

⟩
,

where n := min {n1, n2}. Now, using the monotonicity of rmstall and answerσq

36

(Properties 4.3 and 4.4), we reason:

projσq
(π)⊑e τq =⇒ rmstall

Ä
projσq

(π)
ä
⊑e rmstall(τq)

=⇒ answerσq

Ä
rmstall

Ä
projσq

(π)
ää
⊑e answerσq (rmstall(τq))

=⇒ cr(π)⊑e answerσq (rmstall(τq)).

Notice that τq cannot end in a stalling move, and so rmstall(τq) will have even
length. According to Definition 4.11, we can then expect that

answerσq (rmstall(τq)) = rmstall(τq),

so that by using Property 5.9(iii) we derive

cr(π)⊑e rmstall(τq) = πq,

which is what we wanted to prove.

We now relate the shortest creators of a play with those of its even prefixes.

Proposition 5.19. Let ε ̸= π ∈ σ := σ1 ⋎ σ2, and let πq := crσq (π). Then

cr
(
π−) =

(
π−
1 , π2

)
if (a),(

π1 , π
−
2

)
if (b),(

π−
1 , π

−
2

)
if (c),

depending on whether (a) the penultimate believer move of projσ2
(π) is a stalling,

(b) the penultimate believer move of projσ1
(π) is a stalling, or (c) otherwise.

Proof. This is a consequence of Property 5.17. Perhaps the weird-looking
conditions need further explanation. The last believer move of πq is needed to
form the last move of π− iff the penultimate move of projσq

(π) is a stalling. This
holds because once we project a play to σq, stalling moves might appear to the
quasiplay projections. If the penultimate move of projσq

(π) is such a stalling,

once we delete the last move from πq to obtain π−
q , and use rmstall to remove

all stall–follow moves, the resulting play will be of odd length. answerσq (τ) will
then reproduce the move we deleted, thus bringing us back to πq.

Since ⋎ never concatenates two stalling moves, projσ1
(π) and projσ2

(π) will
never stall simultaneously; this proves that the conditions (a)–(c) are mutually
exclusive.

This proposition might become clearer after inspecting the three commutative
diagrams of Figure 2. There, the stated equality is represented by the commu-
tativity of an appropriate diagram, one for each case (a)–(c).

Corollary 5.20. Let ε ̸= π ∈ σ := σ1 ⋎ σ2. Then

(i) minC(π−) <e minC(π);

37

σ1 σ1 ⋎ σ2

σ1 σ1 ⋎ σ2 σ2

crσ1oo
crσ2

��

crσ1

oo
crσ2

//

−

��

−

��

Figure 2a: The penultimate believer move of projσ2
(π) is a stalling.

σ1 ⋎ σ2 σ2

σ1 σ1 ⋎ σ2 σ2

crσ1

crσ2 //

crσ1

oo
crσ2

//

−

��
−

��

Figure 2b: The penultimate believer move of projσ1
(π) is a stalling.

(ii) minC(π′)⊑e minC(π), for any π′ ⊑e π.

Theorem 5B. The set σ := σ1 ⋎ σ2, is a strategy in ΓP(← G).

Proof. Foremost it is indeed a set of plays in ΓP(← G) thanks to Corollary 5.12.
Non-empty. Since σ1 and σ2 are strategies, they are both non-empty, and

so there is at least one play in σ (obtained by combination).
Even-length. This is a direct application of Corollary 5.14.
Even-prefix-closed. This is immediate by Corollary 5.20, since both σq are

strategies and therefore closed under even prefixes.
Deterministic. Towards a contradiction, assume that π and π̃ are plays of

even length in σ that differ only in the last believer move:

π := ⟨δ0, β0, . . . , δn, βn⟩

π̃ :=
¨
δ0, β0, . . . , δn, β̃n

∂
.

For each of them, use Lemma 5.16 to extract its two quasiplay projections on
σ1 and σ2; (τ1, τ2) from π and (‹τ1,‹τ2) from π̃.

τ1 :=
⟨
δ10 , β

1
0 , . . . , δ

1
n, β

1
n

⟩ ‹τ1 :=
¨
δ10 , β

1
0 , . . . , δ

1
n, β̃

1
n

∂
τ2 :=

⟨
δ20 , β

2
0 , . . . , δ

2
n, β

2
n

⟩ ‹τ2 :=
¨
δ20 , β

2
0 , . . . , δ

2
n, β̃

2
n

∂
,

so that

π =
¨
δ10 ++ δ20 , β

1
0
∗
++ β2

0
∗
, . . . , δ1n ++ δ2n, β

1
n
∗
++ β2

n
∗∂

π̃ =
⟨
δ10 ++ δ20 , β

1
0
∗
++ β2

0
∗
, . . . , δ1n ++ δ2n, β̃

1
n

∗
++ β̃2

n

∗⟩
.

38

σ1 σ1 ⋎ σ2 σ2

σ1 σ1 ⋎ σ2 σ2

crσ1oo
crσ2 //

crσ1

oo
crσ2

//

−

��

−

��
−

��

Figure 2c: Otherwise.

Now, which of the four statements ϕ ∈ βqn
∗ and ϕ ∈ β̃qn

∗
hold? By a tedious and

trivial inspection of all 16 different cases that arise, one can confirm that every
case leads to a contradiction, by obtaining two plays of the same strategy σq,
differing only in their final (believer) move. This is of course absurd because
strategies are deterministic.

Proposition 5.21 (Preservation of totality). The combined strategy σ1 ⋎ σ2 is
total if both σ1 and σ2 are total.

Proof. Suppose that we are given a play ⟨δ0, β0, . . . , δn, βn, δn+1⟩ such that
the immediate prefix

π := ⟨δ0, β0, . . . , δn, βn⟩ ∈ σ.

We seek a believer move βn+1 such that π++ ⟨δn+1, βn+1⟩ ∈ σ. Use Lemma 5.16
to extract the quasiplay projections (τ1, τ2) of π on σ1 and σ2, so that

π = τ1 ⋎̈ τ2 :=
¨
δ10 ++ δ20 , β

1
0
∗
++ β2

0
∗
, . . . , δ1n ++ δ2n, β

1
n
∗
++ β2

n
∗∂
.

Since δn+1 is a valid next-move for π, it consists of doubts from the bodies of
β1
n and β2

n (Property 5.1(ii)), so that it can be unambiguously split into two
sequences of such doubts δn+1 := δ1n+1 ++ δ2n+1. By the totality of σq, there
must be at least one believer move βqn+1 satisfying

π+
q := rmstall(τq) ++

⟨
δqn+1, β

q
n+1

⟩
∈ σq.

Easily now, π+
1 ⋎ π+

2 contains the believer move that we need.

Proposition 5.22 (Preservation of finiteness). The combined strategy σ1 ⋎ σ2
is finite if both σ1 and σ2 are finite.

Proof. By the definition of strategy combination, |σ| is bounded by |σ1 × σ2|,
which is finite since both σq are finite.

Remembering that total + finite = winning, we arrive at the following corollary:

Corollary 5.23 (Preservation of winning). The combined strategy σ1 ⋎ σ2 is
winning if both σ1 and σ2 are winning.

39

5.2.2. Restricting and splitting strategies

Definition 5.13 (Strategy restriction). Let σ be a strategy in ΓP(← G). Then
the restriction of σ with respect to ϕ on Hq, is the set of plays defined by:

σ|ϕHq

df
=
¶
π|ϕHq

∣∣∣ π ∈ σ© .
Theorem 5C. The set of plays σq := σ|ϕHq

is a valid strategy in ΓPq (← G).

Proof. Non-empty. This is trivial, since σ ̸= ∅.
Even-length. It is obvious that restriction leaves lengths of plays intact, so

that every member of σq has even length.
Even-prefix-closed. Let π′

q ⊑ πq ∈ σq, with ℓ :=
∣∣π′
q

∣∣ even. We need π′
q ∈ σq.

Since πq ∈ σq, there is a π ∈ σ such that πq = π|ϕHq
. We now compute:

π′
q = πq↾ℓ =

Ä
π|ϕHq

ä
↾ℓ = (π↾ℓ)︸ ︷︷ ︸

∈σ

|ϕHq
,

which shows that π′
q ∈ σq as was desired.

Deterministic. Suppose that we have the following plays in σq:

πq := ⟨δq0, β
q
0 , δ

q
1, β

q
1 , . . . , δ

q
k, β

q
k⟩ ,

π̃q :=
⟨
δq0, β

q
0 , δ

q
1, β

q
1 , . . . , δ

q
k, β̃

q
k

⟩
,

so that there are plays

π := ⟨δ0, β0, δ1, β1, . . . , δk, βk⟩ ,

π̃ :=
¨‹δ0, β̃0,‹δ1, β̃1, . . . , ‹δk, β̃k∂ ,

in σ, such that
πq = π|ϕHq

and π̃q = π̃|ϕHq
.

Observe that since play-splitting leaves all doubter moves unaltered, we have
that δi = δ̃i (= δqi) for all i = 0, . . . , k. By finite induction on i we show
the corresponding equalities for the believer moves. Assume (the inductive

hypothesis) that βj = ‹βj holds for 0 ≤ j < i ≤ k. Now look at the plays π↾2i+2

and π̃↾2i+2 which both belong in σ since it is prefix-closed. Then βi = ‹βi since
both plays belong in the same (deterministic) strategy σ. This essentially yields
π = π̃ and consequently πq = π̃q, which establishes the determinacy of σq.

Proposition 5.24 (Preservation of totality). If σ is total, then so is σ|ϕHq
.

Proof. We are given a play πq ∈ σq and a doubter move δ such that πq ++ δ is
valid in ΓPq (← G), and we seek a believer next-move for it. By the hypothesis,

there exists some π ∈ σ, such that πq = π|ϕHq
. Since bodies are left intact by

restriction, π ++ δ is valid in ΓP(← G). Hence, by the totality of σ, there is a

believer move β such that π++ ⟨δ, β⟩ ∈ σ. This means that (π ++ ⟨δ, β⟩)|ϕHq
∈ σq,

and its last move is the believer move that we sought.

40

Proposition 5.25 (Preservation of finiteness). If σ is finite, then so is σ|ϕHq
.

Proof. By definition, every play in σ|ϕHq
is created by restricting a play of σ.

This grants finiteness, as σ|ϕHq
is nothing more than the image of a function

(π 7→ π|ϕHq
) whose domain is the finite set σ.

Corollary 5.26 (Preservation of winning). If σ is winning, then so is σ|ϕHq
.

For one last time, we use restriction to obtain splitting:

Definition 5.14 (Strategy splitting). Let σ be a strategy in ΓP(← G). The
splitting of σ with respect to ϕ over H is the pair

σ|ϕH
df
=
Ä
σ|ϕH1

, σ|ϕH2

ä
.

This completes our game-theoretic weaponry for DLP programs. We have
finally reached the point that we can put all those pieces together to prove that
the DLP game semantics is sound and complete with respect to the minimal
model semantics.

6. Soundness and completeness

Before proceeding to prove soundness and completeness of the DLP game
semantics, we state some known results for the case of LP.

Theorem 6A (Di Cosmo–Loddo–Nicolet). The LP game semantics is sound
and complete with respect to SLD resolution.

Theorem 6B (Clark). SLD resolution is sound and complete with respect to
the least Herbrand model semantics.

The first of these is proved in [8], while the second one is due to [7] (and can
also be found in [20, Theorems 7.1 and 8.6]). Putting the above two theorems
together, we arrive at the correctness of the LP game semantics:

Corollary 6.1 (Soundness and completeness of the LP game semantics). Let
P be an LP program, and ← p a goal. Then, there is a winning strategy in the
associated LP game iff p belongs to the least Herbrand model of P.

To prove the equivalence that was promised in the introduction we need the
following lemma, which relates the models of a splitting of a program with those
of the original program.

Lemma 6.2 (Inclusions). Let (P1,P2) be the splitting of P with respect to ϕ
over (H1,H2). Then

MM(P) ⊆ MM(P1) ∪MM(P2) ⊆ HM(P).

41

Proof. Let ϕ1 := ϕ|H1
and ϕ2 := ϕ|H2

. For the first inclusion, let S ∈ MM(P),
and suppose S /∈ MM(P1). We need S ∈ MM(P2). There are two ways in which
S can fail to be in MM(P1): either it is a model but not a minimal one, or it is
not even a model to begin with.
Case 1: S is a non-minimal model of P1. There exists then, a proper submodel
S0 ⊊ S of P1, with S0 |= P1. By definition, this would also be a model of P,
and therefore S would not be minimal in P, which is a contradiction, so that
this case can never arise.
Case 2: S is not a model of P1.

S ∈ MM(P) =⇒ S ∈ HM(P)

=⇒ S |= ψ for all ψ ∈ P

=⇒ S |= ψ for all ψ ∈ P1 \ {ϕ1} (P1 \ {ϕ1} ⊂ P)

=⇒ S ̸|= ϕ1 (by case hypothesis)

Since (ϕ1, ϕ2) is the splitting of ϕ over (H1,H2), S is forced to satisfy ϕ2, and
therefore satisfies every element of P2, so that S ∈ HM(P2).

It remains to show that it is minimal in P2. But if it was not, we would
arrive at the same contradiction as in case 1; therefore, S ∈ MM(P2). We have
proved the inclusion

MM(P) ⊆ MM(P1) ∪MM(P2). (1)

Obviously now, MM(P1) ⊆ HM(P1) and MM(P2) ⊆ HM(P2), so by taking
unions on both sides we obtain

MM(P1) ∪MM(P2) ⊆ HM(P1) ∪HM(P2). (2)

As P is a weaker program than its restrictions, we also have the inclusions
HM(P1) ⊆ HM(P) and HM(P2) ⊆ HM(P). Hence, by taking unions for one last
time,

HM(P1) ∪HM(P2) ⊆ HM(P). (3)

Putting (1)–(3) together:

MM(P) ⊆ MM(P1) ∪MM(P2) ⊆ HM(P1) ∪HM(P2) ⊆ HM(P).

Remark 6.1. One might be tempted to believe that some of these inclusions are
actually equalities, but none of them holds in general, as the following example
demonstrates: consider the DLP program P and its splitting

P :=

®
b ←

a ∨ b ∨ c ←

´
⇝
Ç
P1 :=

®
b ←
a ←

´
, P2 :=

®
b ←

b ∨ c ←

´å
.

Then the corresponding sets of Herbrand models and minimal models are

HM(P) = {{b}, {b, a}, {b, c}, {b, a, c}}, MM(P) = {{b}},
HM(P1) = {{a, b}}, MM(P1) = {{a, b}},
HM(P2) = {{b}, {b, c}}, MM(P2) = {{b}},

42

so that in this example all inclusions are proper:

MM(P) ⊊ MM(P1) ∪MM(P2) ⊊ HM(P1) ∪HM(P2) ⊊ HM(P).

Theorem 6C (Soundness of the finite, clean DLP game semantics). Let P be
a finite, clean DLP program, and ← G a goal. If there is a winning strategy in
ΓP(← G), then G is true in every minimal model of P.

Proof is by induction on the number N(P) of disjunction symbols (∨) that
appear in the heads of P.

Base. Let σ be a winning strategy in ΓP(← G). We claim that there exists
a combo-free winning strategy σ′ in the same game. If so, observe that the
head of the first believer move of every play of σ′ must be one disjunct g of
G. Hence by altering the first (doubter) moves of its plays to correctly doubt
g, we end up with a combo-free, winning strategy in ΓP(← g). This is now
compatible with the LP game and we can use the soundness of the LP game
semantics (Corollary 6.1) to obtain g ∈ LHM(P). But this means that G is true
in LHM(P), the only minimal model of P.
Proof of the claim. If σ contains no combo moves, we are done. Otherwise,
pick a maximal play from σ such that it contains at least one combo move and
look at the last one, β. We show that we can safely replace β by a non-combo
move that contains exactly one of its rules, and still win the game. Towards a
contradiction, suppose that no such rule exists. Then every rule in β contains a
“bad” atom such that when doubted by the doubter, we cannot win. But this
contradicts the fact that σ is winning, as it contains no answer for a doubter
move that doubts exactly one bad atom from each rule of β.

Induction step. Since P is a proper DLP program, we can pick a proper
DLP rule ϕ ∈ P, and split P with respect to it over some proper partition
(H1, H2) of head(ϕ) to get (P1,P2). Notice that max {N(P1), N(P2)} < N(P),
which allows us to use the induction hypothesis for both programs Pq.

Let σ be a winning strategy in ΓP(← G), and split it likewise to derive two
strategies σ1 and σ2 for ΓP1

(← G) and ΓP2
(← G) respectively (Theorem 5C).

Since σ is winning, σ1 and σ2 are also winning (Corollary 5.26), and so by the
induction hypothesis we know that G must be true in every minimal model of
P1 and in every minimal model of P2. In other words, G is true in the union
MM(P1) ∪MM(P2); so by Lemma 6.2, it is true in every element of MM(P).

Theorem 6D (Completeness of the finite, clean DLP game semantics). Let P
be a finite, clean DLP program, and ← G a goal. If G is true in every minimal
model of P, then there is a winning strategy in ΓP(← G).

Proof is again by induction on N(P):
Base. Since LHM(P) |= G, there is at least one g ∈ G with g ∈ LHM(P).

Using the completeness of the LP game semantics (Corollary 6.1), we obtain
a winning strategy σ in the LP game for P with the goal ← g. Without any
modification, we can consider this as a winning strategy in ΓP(← g). It remains

43

to correct all first (doubter) moves by including all extra doubts from G in them.
In this way, we have a winning strategy σ′ in ΓP(← G).

Induction step. Again, pick a proper DLP rule ϕ ∈ P, and split P to get
(P1,P2). We know that G is true in every minimal model of P. Therefore, it
is also true in every model of P (because a non-minimal model can only make
more formulæ true than a minimal one, not less). Using Lemma 6.2 again,
MM(P1) ∪MM(P2) ⊆ HM(P), so that G is true in every minimal model of P1

and in every minimal model of P2. By the induction hypothesis, there are two
winning strategies σ1 and σ2 in the games ΓP1(← G) and ΓP2(← G) respectively.
Using Theorem 5B we can combine them to get a new strategy σ1 ⋎ σ2 for
ΓP(← G), which is winning by Corollary 5.23.

In order to generalize these results to general DLP programs we need the
following key lemma which connects games on a general DLP program P with
its clean version, P̂.

Lemma 6.3. Let P be a general DLP program, and ← G a DLP goal. Then,
there is a winning strategy in ΓP(← G) iff there is a winning strategy in Γ

P̂
(← G).

Proof. “⇒”: We are given a winning strategy σ for ΓP(← G). To win in
Γ
P̂
(← G), we move as follows: suppose that the believer following σ plays

β := ⟨ψ1, . . . , ψn⟩ .

Now, we might not be able to play the same move, because some of the ψi’s
may be unclean, and therefore not available in P̂. But, since each ρ ∈ P gives
rise to a sequence of clean rules ρ̂ (actually a set, but we can fix an ordering
and get a sequence out of it), we play:

β̂ := ψ̂1 ++ · · ·++ ψ̂n.

This describes a winning strategy σ̂ in Γ
P̂
(← G). We must verify two things:

(i) that β̂ is indeed a valid move, and (ii) that we know how to win from any

next doubter move δ̂. (i) is trivial: it is only the heads that affect the validity of
believer moves. Regarding (ii), we make the following claim: for every ψi ∈ β
and for any doubts δ̂i on “ψi, there is a disjunction Di ∈ body(ψi) such that

Di ⊆
î
δ̂i
ó
. Then, our move in Γ

P̂
(← G) against a doubter move consisting of

such doubts
δ̂ := “δ1 ++ · · ·++ “δn

is σ’s move for the doubts δ :=
⟨
D1, . . . , Dn

⟩
, valid thanks to the claim and the

trivial observation thatî
δ̂
ó
=
î “δ1 ++ · · ·++ “δn ó = î “δ1 ó ∪ · · · ∪ î “δn ó .

Proof of the claim. Assume otherwise: there is a rule ψi ∈ β of the form

ψi := Ei ← Di1 , · · · , Diki ,

44

and a δ̂i on “ψi such that for all Di
j ∈ body(ψi), D

i
j ̸⊆

î
δ̂i
ó
, i.e., there is a

dij ∈ Di
j with dij /∈

î
δ̂i
ó
. But this implies that δ̂ did not doubt anything from

the body of the rule

Ei ← di1 , · · · , diki ∈ “ψi,
which is impossible.

“⇐”: In this direction we are given a strategy σ in Γ
P̂
(← G). Again, to win in

ΓP(← G), we follow σ for as long as it does not instruct us to include transformed
rules, i.e., rules that do not exist in P. Suppose now that β := ⟨ψ1, . . . , ψn⟩ is
the move that σ would play, where some of the ψi’s are transformed. We then
play

β∨ := ⟨ψ∨
1 , . . . , ψ

∨
n ⟩ ,

where ψ∨
i := the first ρ ∈ P such that ψi ∈ ρ̂.

And this describes a winning strategy σ∨ in ΓP(← G). We must verify the
same claims (i)–(ii) as above. (i) is trivial for the same reason. For (ii), let
δ∨ := ⟨D1, . . . , Dn⟩ be such a doubter response to β∨ so that Di ∈ body(ψ∨

i).
This translates easily to a doubt δ on β, namely

δ := ⟨{d1} , . . . , {dn}⟩ ,

where di ∈ Di and {di} ∈ body(ψi), so that

[δ] = {d1, . . . , dn} ⊆ D1 ∪ · · · ∪Dn = [δ∨] .

This allows us to copycat the move that σ would play in Γ
P̂
(← G) against δ.

We go on in this manner until the winning strategy σ plays a fact ψ among its
rules; then ψ∨ will also be a fact.

Theorem 6E (Soundness and completeness for finite DLP). Let P be a finite,
general DLP program, and ← G a DLP goal. Then, there exists a winning
strategy in ΓP(← G) iff G is true in every minimal model of P.

Proof. We have proved everything we need:

there is a winning
strategy in ΓP(← G)

⇐⇒ there is a winning
strategy in Γ

P̂
(← G)

(Lemma 6.3)

⇐⇒
G is true on every

minimal model of P̂

(Theorem 6C ⇒)
(Theorem 6D ⇐)

⇐⇒ G is true on every
minimal model of P.

(Property 2.1)

We now drop the heavy restriction of finiteness. This has the remarkable
consequence that we can handle ground(P) for any first-order DLP program P

(see also Remark 3.2).

45

Theorem 6F (Soundness and completeness for general DLP). Let P be a gen-
eral DLP program, and ← G a disjunctive goal. Then, there exists a winning
strategy in ΓP(← G) iff G is true in every minimal model of P.

Proof. Completeness. Assume G is true in every minimal model of P, and
therefore also in every model of P, in symbols P |= G. By the compactness
theorem of propositional calculus, there exists a finite subset PG ⊆ P such that
PG |= G. Specifically, G is true in every minimal model of PG, which allows us
to use Theorem 6E to obtain a winning strategy σG in ΓPG(← G). Observe now
that this very strategy is still winning in the “bigger” game ΓP(← G), since the
believer will never pick any of the additional rules, and therefore the course of
the game cannot change.

Soundness. Suppose we have a winning strategy σ for ΓP(← G). This can
only use a finite number of rules from P, which form a finite subset Pσ ⊆ P.
Obviously, σ is still winning in ΓPσ (← G). This means that G is true in every
minimal model of Pσ (by Theorem 6E again), and therefore in every model of
Pσ. Since there are no negations involved, G remains true in every model of the
superset P; specifically in every minimal one.

Corollary 6.4 (Soundness and completeness for first-order DLP). Let P be a
first-order DLP program, and C a positive ground clause. Then P |= C iff there
exists a winning strategy in Γground(P)(← C).

Proof.

P |= C ⇐⇒ C is true in every m.m. of P (Theorem 3B)

⇐⇒ C is true in every m.m. of ground(P) (Property 3.2)

⇐⇒ there is a winning σ in Γground(P)(← C) (Theorem 6F)

7. Conclusion

In this article, we defined a game semantics for disjunctive logic programs
and proved it equivalent to the standard denotational semantics. In order to
accomplish this, we developed a novel presentation of DLP programs, studied
its syntax and semantics, and defined the DLP game in terms of it. At this
point, two directions of further investigation seem promising.

DLPN. The obvious next step is to unite the two games DLP and LPN to
form a game for the case of DLPN, and prove its correctness by establishing the
equivalence with the infinite-valued minimal model semantics of [6]. Expressed
in the colloquial style of the equation in p. 18,

DLP game = LP game + implicit rules + combo moves

LPN game = LP game + rôle-switch

DLPN game
?
= LP game + rôle-switch + implicit rules + combo moves.

In this way, we will have a first, truly uniform approach to semantics, one that
is able to deal with all four main versions of logic programming.

46

Connections through games. As was mentioned in the introduction, the defini-
tions, the statements, and in general the whole development, has been mainly
influenced by games from the functional programming world. Once all four ver-
sions of logic programming have been dealt with in a uniform way via games,
a fruitful connection with the functional games might be possible. In this
way, games could help in building a long-desired bridge between the “sister
paradigms” of declarative programming: logic and functional.

Acknowledgments

Foremost I am indebted to Olivier Laurent for his constructive guidance,
patience, and support. Without his countless suggestions, I would still be strug-
gling to prove much harder albeit equivalent claims. I would also like to thank
Panos Rondogiannis and John Power for many helpful comments and enlight-
ening conversations.

References

[1] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF, In-
formation and Computation 163 (2000) 409–470.

[2] S. Abramsky, G. McCusker, Game semantics, in: H. Schwichtenberg,
U. Berger (Eds.), Computational Logic: Proceedings of the 1997 Mark-
toberdorf Summer School, Springer-Verlag, 1999, pp. 1–56.

[3] J.M. Andreoli, Logic programming with focusing proofs in linear logic,
Journal of Logic and Computation 2 (1992) 297–347.

[4] J.M. Andreoli, R. Pareschi, Logic programming with sequent systems, in:
P. Schroeder-Heister (Ed.), Extensions of Logic Programming, volume 475
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1991,
pp. 1–30.

[5] K.R. Apt, Logic programming, in: Handbook of theoretical computer sci-
ence (vol. B): formal models and semantics, MIT Press, Cambridge, MA,
USA, 1990, pp. 493–574.

[6] P. Cabalar, D. Pearce, P. Rondogiannis, W. Wadge, A purely model-
theoretic semantics for disjunctive logic programs with negation, in:
C. Baral, G. Brewka, J. Schlipf (Eds.), Logic Programming and Non-
monotonic Reasoning, volume 4483 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2007, pp. 44–57.

[7] K. Clark, Predicate Logic as a Computational Formalism, Ph.D. thesis,
Queen Mary, University of London, 1980.

47

[8] R. Di Cosmo, J.V. Loddo, S. Nicolet, A game semantics foundation for
logic programming, in: C. Palamidessi, H. Glaser, K. Meinke (Eds.),
Principles of Declarative Programming, volume 1490 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 1998, pp. 355–373.
10.1007/BFb0056626.

[9] M.H. van Emden, Quantitative deduction and its fixpoint theory, Journal
of Logic Programming 3 (1986) 37–53.

[10] M.H. van Emden, R.A. Kowalski, The semantics of predicate logic as a
programming language, Journal of the ACM 23 (1976) 569–574.

[11] M. Fitting, Fixpoint semantics for logic programming—a survey, Theoret-
ical Computer Science 278 (1999) 25–51.

[12] C. Galanaki, P. Rondogiannis, W.W. Wadge, An infinite-game semantics
for well-founded negation in logic programming, Annals of Pure and Ap-
plied Logic 151 (2008) 70–88. First Games for Logic and Programming
Languages Workshop.

[13] M. Gelfond, Answer sets, in: F. van Harmelen, V. Lifschitz, B. Porter
(Eds.), Handbook of Knowledge Representation, Elsevier, 2008.

[14] M. Gelfond, V. Lifschitz, The stable model semantics for logic program-
ming, MIT Press, 1988, pp. 1070–1080.

[15] W. Hodges, Logic and games, in: E.N. Zalta (Ed.), The Stanford Encyclo-
pedia of Philosophy, 2009, spring 2009 edition.

[16] J.M.E. Hyland, C.H. Ong, On full abstraction for PCF: I. Models, observ-
ables and the full abstraction problem; II. Dialogue games and innocent
strategies; III. A fully abstract and universal game model, Information and
Computation 163 (2000) 285–408.

[17] E. Komendantskaya, G. McCusker, J. Power, Coalgebraic semantics for
parallel derivation strategies in logic programming, in: M. Johnson,
D. Pavlovic (Eds.), AMAST, volume 6486 of Lecture Notes in Computer
Science, Springer, 2010, pp. 111–127.

[18] E. Komendantskaya, J. Power, Coalgebraic semantics for derivations in
logic programming, in: Proceedings of the 4th international conference on
Algebra and coalgebra in computer science, CALCO’11, Springer-Verlag,
Berlin, Heidelberg, 2011, pp. 268–282.

[19] V. Kountouriotis, C. Nomikos, P. Rondogiannis, A game-theoretic charac-
terization of boolean grammars, Theoretical Computer Science 412 (2011)
1169–1183.

[20] J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1987.

48

[21] J.W. Lloyd, R.W. Topor, Making Prolog more expressive, Journal of Logic
Programming 3 (1984) 225–240.

[22] J. Lobo, J. Minker, A. Rajasekar, Foundations of disjunctive logic program-
ming, MIT Press, Cambridge, MA, USA, 1992.

[23] J.V. Loddo, R.D. Cosmo, Playing logic programs with the alpha-beta algo-
rithm, in: M. Parigot, A. Voronkov (Eds.), LPAR, volume 1955 of Lecture
Notes in Computer Science, Springer, 2000, pp. 207–224.

[24] P. Lorenzen, Ein dialogisches konstruktivitätskriterium, in: Infinitistic
Methods: Proceedings of the Symposium on Foundations of Mathemat-
ics, Warsaw, 2–9 September 1959, Pergamon Press, 1961, pp. 193–200.

[25] D. Miller, G. Nadathur, Programming with Higher-Order Logic, Cambridge
University Press, 2012.

[26] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform proofs as a
foundation for logic programming, Annals of Pure and Applied Logic 51
(1991) 125–157.

[27] D. Miller, A. Saurin, A game semantics for proof search: Preliminary re-
sults, Electronic Notes in Theoretical Computer Science 155 (2006) 543–
563.

[28] J. Minker, On indefinite databases and the closed world assumption, volume
138 of Lecture Notes in Computer Science, Springer-Verlag, 1982.

[29] J. Needham, M.D. Vos, A games semantics of ASP, in: V. Dahl, I. Niemelä
(Eds.), Logic Programming, volume 4670 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2007, pp. 460–461.

[30] H. Nickau, Hereditarily sequential functionals, in: A. Nerode, Y. Matiya-
sevich (Eds.), LFCS, volume 813 of Lecture Notes in Computer Science,
Springer, 1994, pp. 253–264.

[31] C. Nomikos, P. Rondogiannis, A game semantics for intensional logic pro-
gramming, Presented in Games for Logic and Programming Languages
(GaLoP) VII, Dubrovnik, Croatia, 2012.

[32] D. Pym, E. Ritter, A games semantics for reductive logic and proof-search,
in: D.R. Ghica, G. McCusker (Eds.), Games for Logic and Programming
Languages (GALOP 2005), University of Edinburgh, 2–3 April 2005, pp.
107–123.

[33] R. Reiter, On closed world data bases, Logic and Databases (1978) 55–76.

[34] P. Rondogiannis, W.W. Wadge, Minimum model semantics for logic pro-
grams with negation-as-failure, ACM Trans. Comput. Logic 6 (2005) 441–
467.

49

[35] Th. Tsouanas, Semantic approaches to Logic Programming, Master’s the-
sis, 2010.

[36] J. Väänänen, Models and Games, Cambridge series in advanced mathe-
matics, Cambridge University Press, 2011.

[37] A. Van Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for
general logic programs, J. ACM 38 (1991) 619–649.

50

Index

A, 7, 25
N(P), 43
TP , 3
ΓP(← G), 5, 19⊔
, 24

:=, 7
·⋎ ·

D ⋎ E, 11
D ⋎ E , 11
ϕ1 ⋎ ϕ2, 11
σ1 ⋎ σ2, 34
τ1 ⋎ τ2, 32
τ1 ⋎̈ τ2, 29

·|··
P|ϕA, 12
P|ϕH, 13
ϕ|A, 12
π|ϕHq

, 33

π|ϕH, 34

σ|ϕHq
, 40

σ|ϕH, 41
:=, 7
df
=, 7
[·], 11, 20
P̂, 10
L, 8
C(π), 34
F, 6, 13, 15
T, 6, 13, 15
++, 6
::, 6
⊑e, <e, 6
⊑, <, 6
s↾n, 6
βqi

∗
, 27, 29, 35, 38, 39

| · |, 6
≡, 6, 25, 28
Tq, 35
HB(P), 13, 20
HM(P), 14, 41, 42
LHM(P), 14, 43

MM(P), 15, 41, 42
answerσ(π), 24, 35–37
body(ϕ), 9
cr(π), 36, 37
crσq , 36
ground(P), 8
ground(ϕ), 8
head(ϕ), 9
projσq

(π), 35
rmstall(τ), 22
sync(τ1, τ2), 31
β, 22

δ, δ , 22
π−, 24, 35, 37
τ−, 6
ε, 21, 23
P+, 20

agree
τ with σ, 35

AJM games, 5
alpha-beta pruning algorithm, 4
answer

computed, 4
correct, 3

answer set programming, 6
ASP, 6

believer move, 20
benefit of the doubt, 20, 25
body, 2, 7
boolean grammar, 5

chain, 24
clause, 7

body, 7
fact, 7
goal, 7
head, 7
Horn, 6

clean
program, 8
rule, 7

51

version, see also P̂, 10
closed world assumption, 26
closure operator, 24
CNF, 7
coalgebraic semantics, 6
combination, 4

of conjunctions, 11
of dialogues, 32
of disjunctions, 11
of rules, 11
of strategies, 34
of synchronous plays, 28, 29

combo move, 20, 26, 43
commutative diagram, 35, 37
completeness, 4, 41
computed answer, 4
conjunction, 7

combination, 11
cons, 6
constraint logic programming, 5
correct answer, 3
creators, 34

shortest, 34
CWA, see closed world assumption

declarative programming, 6, 47
declarative semantics, see denotational

semantics
decomposition, 34
denotational semantics, 13
description logic, 26
desugaring, 10
diagram

commutative, 35, 37
dialogue, 21

combination, 32
synchronization, 30

dialogue games, 17
disjunction, 2, 7

combination, 11
disjunctive clause, 9
disjunctive combination, see combina-

tion
DLP, 3, 7

compatibility, 26
conjunction, see conjunction

denotational semantics, 15
disjunction, see disjunction
game
simplified, 17

game semantics, 25
completeness, 43
soundness, 43

program, see program
rule, see rule

DLPN, 3
doubt, 20
doubter move, 20
draw, 26

extensive operator, 24

fact, 7
first-order

language, 8, 16
program, 8, 16

fixpoint semantics, 3, 16
follow move, 22
forbidden move, 27
functional programming, 5, 47

game
LP, 17
LPN, 17
play, 21
simplified DLP, 17
strategy, 23

game semantics, 4, 25, 25
general

program, 8
goal, 7

success, 14, see also semantics
grammar

boolean, 5
ground, 8

atom, 8
formula, 8
term, 8

ground instance, 8

head, 2, 7
Herbrand

52

base, see also HB(P), 13, 16
interpretation, 13, 16
least model, see also LHM(P), 14
model, 13, 16

least, 2, 5
universe, 16

Horn clause, 6

idempotent
operator, 24

immediate consequence operator, 3
implicit rule, 17
inference rule

resolution, 3
SLD, 3
SLI, 3

justification, 20

knowledge representation, 26

language
first-order, see first-order language

least Herbrand model, see Herbrand
model, 14, 41

least upper bound, 24
limit, 24
linear logic, 6
Lloyd–Topor transformation, 10
logic programming, 2, 47

constraint, 5
Lorenzen dialogue games, 17
LP, 3, 41

denotational semantics, see also least
Herbrand model, 14

game, 17, 41
game semantics, 25

completeness, 41
soundness, 41

LPN, 3
game, 17, 26

lub, see least upper bound

minimal model semantics, 5, 15
Minker semantics, see minimal model

semantics
mip, see model intersection property

model
Herbrand, see Herbrand model
minimal, 5
well-founded, 2, 5, 26

model intersection property, 14
model-state, 15
model-theoretic semantics, 3
monotone

answerσ(π), 24, 36
rmstall(τ), 23, 36
sync(τ1, τ2), 32
τ1 ⋎ τ2, 33
τ1 ⋎̈ τ2, 30
operator, 24

move
believer, 20
combo, see combo move
doubter, 20
doubts of δ, 20
follow, 22
forbidden, 27
justification of β, 20
release, 27
stalling, 22
statement, 20

negation, 2
negation-as-failure, 2
notation, 6, 22, 26

open world assumption, 26
operational semantics, see procedural

semantics
operator

closure, 24
extensive, 24
idempotent, 24
immediate consequence, 3
monotone, 24

OWA, see open world assumption

PCF, 5
play, see also preservation, 21

combination, 32
synchronous, 29

creators, 34

53

in sync with, see synchronous
restriction, 33
splitting, 34
synchronization, 30
synchronous, see synchronous

player rôles, 19
poset, 23
preservation

of finiteness
σ|ϕHq

, 41
σ1 ⋎ σ2, 39

of parity
sync(τ1, τ2), 32
τ1 ⋎ τ2, 33, 35, 38
τ1 ⋎̈ τ2, 30

of plays
τ1 ⋎ τ2, 32
τ1 ⋎̈ τ2, 30

of totality
σ|ϕHq

, 40
σ1 ⋎ σ2, 39

of winning
σ|ϕHq

, 41, 43
σ1 ⋎ σ2, 39, 44

procedural semantics, 3, 4
program

clean, 8
dialogue, 21
first-order, 8
general, 8
proper, 8
propositional, 8
quasidialogue, 20
restriction, 12
splitting, 13

programming
answer set, 6
declarative, 6, 47
functional, 47
logic, 47

projection, 35
proof search, 6
proper

program, 8
rule, 7

propositional

program, 8

quasidialogue, 20
quasiplay, 21, 35

rôle, 19
refutation, 3
release, see also βqi

∗
, 27

resolution, 3
SLD, 3, 41
SLI, 3

restriction
of a play, 33
of a program, 12
of a rule, 12
of a strategy, 40

rule, 7
body, 2, 7
clean, 7
combination, 11
head, 2, 7
implicit, 17
proper, 7
restriction, 12

semantic web, 26
semantics

coalgebraic, 6
declarative, see denotational
denotational, 2, 13
fixpoint, 3, 16
game, 4, 25
least Herbrand model, 14
least model-state, 15
minimal model, see minimal model

semantics, 15
model-theoretic, 3
operational, see procedural
procedural, 3, 4
stable model, 6
well-founded, see well-founded

sequent calculus, 6
SLD resolution, 3, 41, see also proce-

dural semantics
SLI resolution, 3
soundness, 4, 41

54

splitting, 4
of a play, 34
of a program, 13
of a strategy, 41

stable model semantics, 6
stalling, 22
statement, 20
strategy, see also preservation, 23

combination, 34
combo-free, 23, 43
restriction, 40
splitting, 41
total, 24
winning, 24

success of a goal, see goal success
synchronization, see also sync, 30
synchronous

combination, see combination of
synchronous plays

plays, 28
syntactic sugar, 10

tie, 26
total strategy, see also preservation, 24
truth values, see also T, F, 6

well-founded model, see model
winning

strategy, 24

55

