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Abstract

In this article an abstract framework for logic programming semantics is defined and various known semantic approaches are
placed within this framework. This way, semantics become formal mathematical objects of study. In developing this framework,
we introduce the general notion of a truth value space, on which we evaluate formulæ. As expected, the booleans form the canonical
example of a truth value space, but we need to consider much more general ones when dealing with negation-as-failure. Then
we define a semantic operator which transforms any given abstract semantics of a non-disjunctive language to a semantics of the
“corresponding” disjunctive one. We exhibit the correctness of this transformation by proving that it preserves equivalences of
semantics, and we present some applications of it. In particular, three new semantics for disjunctive programs with negation are
constructed: a first model-theoretic semantics for infinite such programs, and two novel game-theoretic ones for finite ones.
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1 Introduction

1.1 What is a logic program?

A logic program can be loosely described as a set of rules of the form

this ← that,

read as “this holds, if that holds”, or “I can solve this problem, if I know how to solve that one”. Depending on
what restrictions we impose on this (the head of the rule) and that (the body), we enable or disable features
of the resulting programming language. In its simplest form, a rule looks like this:

a ← b1 ,,, · · · ,,, bm, (LP)

where commas on the right stand for conjunctions. One extension allows negations to appear in body rules: 3

a ← b1 ,,, · · · ,,, bm ,,,∼c1 ,,, · · · ,,,∼ck. (LPN)

But the extension in which we are mostly interested in this text is the appearance of disjunctions in heads:

a1 ∨ · · · ∨ an ← b1 ,,, · · · ,,, bm. (DLP)
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RECRE ANR Blanc 11-BS02-010 and CNPq project 400506/2014-9.
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3 By negation, we mean negation-as-failure (see [Cla78]).
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This enables us to express uncertainty and to derive ambiguous information. Finally, one can consider both
extensions simultaneously, by allowing both negations in bodies and disjunctions in heads:

a1 ∨ · · · ∨ an ← b1 ,,, · · · ,,, bm ,,,∼c1 ,,, · · · ,,,∼ck. (DLPN)

These extensions are summarized in the figure below:

∼ ∨

∼∨

LPLP

LPNLPN DLPDLP

DLPNDLPN

LP : the so-called definite logic programs (no negations, no disjunctions);

DLP : disjunctive logic programs;

LPN : logic programs with negation;

DLPN : disjunctive logic programs with negation.

1.2 What is a semantics?

This question has more answers than one could hope for, and to my knowledge this is the first attempt to give
an abstract yet formal answer. But let us first review a few different approaches. 4

Model-theoretic semantics.
The standard denotational semantics for LP is provided by a specific two-valued model, the so-called least

Herbrand model, with which the reader is assumed to be familiar, along with related notions: Herbrand universe,
Herbrand base, Herbrand interpretation, etc. Consult [vEK76] or [Llo87] for further information. 5 For LPN,
the semantics we have in mind is supplied by the many-valued well-founded model, defined in [VGRS91]. 6

Instead of a single least model, for DLP, we use a set of minimal models for the semantics, as defined in [Min82]
and extensively studied in [LMR92]. Finally, a satisfactory, infinite-valued, model-theoretic semantics for DLPN
was recently defined in [CPRW07]. However, this semantics only deals with finite propositional programs, and
thus it is not adequate when we are dealing with first-order ones (see the remark at the end of this section). In
this article we will obtain “for free” a semantics for DLPN that is able to handle infinite propositional programs
instead, thus filling this gap.

Procedural or operational semantics.
The actual implementation of each of the above languages is usually given by refutation processes. Given

a goal, the system tries to disprove it by constructing a counterexample: a proof that the program together
with the goal is an inconsistent set of rules. Traditionally, such proofs make use of some inference rule based
on resolution. This might be, for example, SLD resolution in the case of LP, or SLI resolution for DLP. In
this work, we do not touch this operational side of semantics; see [Apt90] for the non-disjunctive and [LMR92]
for the disjunctive cases.

Before turning to the next approach, game semantics, one should have a clear understanding of the nature of
the aforementioned methods. On one side, we have the denotational semantics (e.g. model-theoretic and their
fixpoint characterizations). These provide us with a notion of correctness for every possible answer to a goal
that we might give to our program. On the operational side, the procedural semantics provide a construction

4 This is not by any means a complete presentation. Two particularly interesting methods that we omit are proof-theoretic
semantics (e.g. [MN12], [MNPS91], [AP91], [And92], [PR05], and [MS06]) as well as coalgebraic ones (e.g. [BM09], [KMP10],
[KP11], [KPS13], and [BZ13]).
5 Frequently, to construct the model-theoretic semantics we use an immediate consequence operator (traditionally denoted by
TP) associated with each program P, and look at its fixpoints; see [Llo87]. We will not concern ourselves with fixpoints in this
article. An excellent survey of fixpoint semantics is [Fit99].
6 This is one of the two mainly accepted semantics in this case. The other one is stable model semantics which was proposed
in [GL88], and assigns to each program P a certain set of well-behaved models, called stable models. A program may have zero,
one, or more such models, which is in this approach the price to pay in order to support negation. This school of programming
eventually lead to what is now known as answer set programming (ASP). Consult [Gel08] for further information.
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of an answer to our question (the so-called computed answer), and this answer has to be correct. Conversely,
such a procedure is expected to be able to derive all of the answers that the denotational semantics considers
correct. We then say that the procedural semantics is sound and complete with respect to the denotational
one.

Game semantics.
Here we adopt an anthropomorphic point of view, and treat each program as a set of rules for a game, in

which two players compete against each other with respect to the truth of a given goal. One player, who has
the rôle of the “Doubter” doubts the goal’s truthness, while the other player, being the “Believer”, believing
that the goal is true, tries to defend his stance. To get a meaningful semantics out of such games, we look at
the winning strategies of the players, and depending on their existence, we assign an actual truth value to the
given goal. This game-theoretic approach to semantics is influenced by Lorenzen’s dialogue games for logic
(see [Lor61]). A game semantics may have a denotational or an operational flavor, or lie somewhere in-between
the two. In [DCLN98], for example, they stay close to the procedural side of semantics, dealing directly with
first-order programs, while the game semantics of [GRW08] and [Tso13], which are the ones that we use here,
are more of a denotational nature.

LP. Given an LP program P, we say that the goal p succeeds, if Believer has a winning strategy in the
game ΓLP

P (← p) (see [DCLN98] and [Tso13]).
DLP. To account for disjunctions in the game world, we only need to add a couple of rules to the original

game. The definition of the semantics, stays the same: a goal succeeds if Believer has a winning strategy in
the DLP game (see [Tso13]).

LPN. Again, starting from the LP game, we only add one rule to it and reach the LPN game (see [GRW08])
which we use to obtain a semantics for LPN. This time, the change of rules implies that there might be ties
between the two players, and there might be the case that both players have a strategy which can guarantee
at least a tie. With these changes we manage to capture the extra truth values of the well-founded models
(either the infinite-valued or the three-valued one).

DLPN. At this point we do not know of a game for DLPN that we can use to obtain the required semantics.
An obvious idea is to consider the LP game together with the extra rules of the DLP game and the ones of
the LPN game, but it has proven difficult to prove its correctness. However, as an application of the abstract
semantic framework, we will define an operator that acts on semantics of non-disjunctive languages, and yields
a new semantics, for the corresponding disjunctive ones. Thus, using this operator on the LPN game semantics
we will obtain, again “for free”, a novel game semantics for DLPN.

Infinite propositional vs. finite first-order programs.
It is well known that for a finite first-order logic program, there corresponds an infinite propositional one,

with equivalent denotational semantics. 7 Therefore, once we have accomplished to define a semantics for
infinite propositional programs, we can use it for finite first-order programs as well. Mathematically speaking,
it is quite cumbersome to deal with function symbols and variables; instead we embrace infinity and restrict
ourselves to propositional programs. See [Fit99] for a relevant discussion.

2 The syntax of logic programs

In order to study any language, we need a precise description of its syntax. Following mathematical tradition,
in this section we give formal (set-theoretic) definitions of the four logic programming languages mentioned in
the introduction.

Foremost we assume a countably infinite set At whose elements we denote by a, b, c, . . . and we call atoms.
We use the binary connectives ∨, ∧, and→, and the unary connective ∼, which is meant to stand for negation-
as-failure to build the well-formed formulæ (wff) of this logic. Atoms and their negations form the set Lit of
literals. The language L is the set of all wffs. 8

Definition 2.1 An L.P. disjunction is a finite subset D ⊆ Lit. An L.P. conjunction is a finite sequence D of
L.P. disjunctions. For obvious reasons we omit the “L.P.” prefix whenever no confusion arises. A clause is a
pair (H,D), in which the head H = {a1, . . . , an} is an L.P. disjunction, and the body D = 〈D1, . . . , Dm〉 is

7 This infinite program is essentially obtained by collecting into a set all ground instantiations of every rule that appears in the
original first-order program.
8 Note that we have not specified what the atoms in At really are. One may consider them to simply be propositional variables
without any further structure, just like in propositional calculus. In this case, we have a propositional program. Another possibility
is to let them be the atomic formulæ of a first-order language, built by its predicates, function symbols, variables, and constants.
We then call it a first-order program.
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an L.P. conjunction. If the head of a clause is non-empty we call it a rule, while if it is empty and m = 1, a
goal. 9 A fact is a bodiless clause. In logic programs, rules will be written as

a1 ∨ · · · ∨ an︸ ︷︷ ︸
head

← `11 ∨ · · · ∨ `1s1 ,,, · · · ,,, `
m
1 ∨ · · · ∨ `msm︸ ︷︷ ︸

body

.

Such a rule is called disjunctive (also proper) if n > 1; it is clean, if sj = 1 for all 1 ≤ j ≤ m. Therefore, a
clean rule looks like this:

a1 ∨ · · · ∨ an ← `1 ,,, · · · ,,, `m.

A clean program is a countable set of clean rules; it is disjunctive (also proper), if at least one of its rules is. 10

Example 2.2 The set {a, b, c} is understood to stand for the disjunction a∨b∨c, the sequence 〈{a} , {b, c}〉 for
the conjunction a ∧ (b ∨ c), and the pair ({p, q} , 〈{a, b} , {b, c}〉) for the implication ((a ∨ b) ∧ (b ∨ c))→ p ∨ q.

Since a program is itself a set of rules, programs can also be translated in the same manner:

Example 2.3 Consider the program 
p ∨ q ← a ,,, b ∨ t

r ← ∼a ,,, t
t ←

 .

Translating it into set-theoretic terms, we end up with the following set of pairs:

{({p, q} , 〈{a} , {b, t}〉), ({r} , 〈{∼a} , {t}〉), ({t} , 〈 〉)} .

Definition 2.4 A logic programming language L is determined by:

• HL, the set of heads of L-rules;

• BL, the set of bodies of L-rules;

• QL, the set of L-queries (goal clauses).

We define the set of L-rules as RL
def
= HL ×BL. An L-program is a set of L-rules. We write PL for the set of

all L-programs and we drop all those “L-” prefixes when L is clear by the context. In most logic programming
languages, the bodies of rules are required to be conjunctions, in which case we denote by CL the set of all
possible conjuncts out of which bodies are formed; in this case we have

BL
def
= C?

L

where C?
L is the set of all finite sequences of members of CL.

Four logic programming languages.
To formally define the languages we are interested in, we need to specify for each one of them its determining

sets: its heads, its body-conjuncts, and its queries. Here they are: 11

HLP
def
= ℘1(At) HLPN

def
= ℘1(At) HDLP

def
= ℘f(At) HDLPN

def
= ℘f(At)

CLP
def
= ℘1(At) CLPN

def
= ℘1(Lit) CDLP

def
= ℘f(At) CDLPN

def
= ℘f(Lit)

QLP
def
= ℘1(At) QLPN

def
= ℘1(Lit) QDLP

def
= ℘f(At) QDLPN

def
= ℘f(Lit).

Notice that for all of the languages above, the sets CL and QL coincide.

9 We have imposed the restriction m = 1 for goals. This will simplify the development without any significant loss: to deal with
a goal like ← D1 ,,, · · · ,,, Dm, one can simply add the rule w ← D1 ,,, · · · ,,, Dm to the program, where w is a suitable fresh atom, and
query w instead.
10For reasons of simplicity, when dealing with semantics, we frequently assume that programs are clean. This does not really

impose any substantial restriction: for an unclean program D, we simply use the semantics of its equivalent clean version D̂
following the “Lloyd–Topor transformation” (see [LT84] or [Tso13]).
11Given a set X, its powerset is ℘(X), and we subscript it with n to refer to the set of all subsets of X of cardinality n: e.g.,
℘1(X) is the set of all singleton-subsets of X. For the set of all finite subsets of X we use ℘f(X), so that ℘f(X) =

⋃
i∈ω

℘i(X).
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Example 2.5 Here are some sample programs written in these languages:

P1 =


p ← a

p ← b

b ←

︸ ︷︷ ︸
∈PLP

P2 =


p ←
r ← ∼p
s ← ∼q

︸ ︷︷ ︸
∈PLPN

P3 =


a ∨ b ←

p ← a

p ← b

︸ ︷︷ ︸
∈PDLP

P4 =


p ∨ q ∨ r ←

p ← ∼q
q ← ∼r
r ← ∼p

︸ ︷︷ ︸
∈PDLPN

.

3 Truth value spaces

The standard semantics of propositional logic is provided by Boolean logic, by mapping each binary connective
above to the corresponding boolean operation on B = {F,T}. As it turns out, we will need more truth values
to handle negation, and therefore we will not tie ourselves to the booleans. Abstracting away the properties
that we need, we reach the following:

Definition 3.1 A truth value space is a completely distributive Heyting algebra A with an additional unary
operator ∼ in which the following law holds: 12

a⇒
∨

s∈S
s =

∨
s∈S

(a⇒ s), for any S ⊆ A.

We impose no condition on ∼. Naturally we call members of a truth value space truth values and we use the
term V-interpretation for any Herbrand interpretation whose values lie in V.

Note that a truth value space’s structure allows us to interpret all symbols of our programming languages.
The canonical example of a truth value space is B, in which ∼ is defined as the classical negation that flips the
two values. As mentioned above, this space turns out to be too poor for languages that actually use negation
as failure, and so we now investigate spaces with more values.

The spaces Vκ
Even though three-valued logics have been used for many years in the study of negation in logic programming
(e.g., [VGRS91], [Fit85], and [Kun87]) we jump directly to a family of infinite-valued logics on which we will
eventually base our semantics of negation-as-failure. We are actually dealing with refinements of the usual
three-valued logic that was originally used for the well-founded semantics, enjoying some additional convenient
properties. Spaces of this kind were first introduced in [RW05], and further studied in [GRW08] and [Lüd11].

Definition 3.2 Let κ ≥ ω be an ordinal number. The structured set 13

Vκ = (Vκ;∨,∧,⇒,∼)

consists of an infinite number of distinct elements, which we separate into three disjoint sets:

Fκ
def
= {Fα | α < κ} ; U

def
= {U} ; Tκ

def
= {Tα | α < κ} .

We denote their union by Vκ
def
= Fκ ∪U ∪ Tκ, and equip it with the total order

F0 < F1 < · · · < Fα < · · · < U < · · · < Tα < · · · < T1 < T0.

This turns Vκ into a complete bounded lattice, thus determining ∨, ∧, and ⇒:

x ∨ y = max {x, y} , x ∧ y = min {x, y} , and x⇒ y =

ß
T0 if x ≤ y,
y otherwise.

12Consult [DP02] for more information about lattices, Heyting algebras, and related tools and notation.
13Here we follow the usual practice of abusing the notation by identifying the structured set with its carrier.
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But for Vκ to be a valid candidate for a truth value space, it remains to define the operator ∼:

∼x def
=


Tα+1 if x = Fα,
Fα+1 if x = Tα,
U if x = U.

Unless explicitly mentioned, we will simply write V instead of Vω in case κ = ω.

The intuition behind these truth values is easy to explain: we identify F0 and T0 with the usual boolean
values F and T, i.e., absolute truth and absolute falsity. The ordinal in the subscript corresponds to a level of
doubt that we have, so that F1 represents a “false” value but with a little doubt, F2 one with a little more, etc.,
and similarly for the “true” values. In the middle lies U, which we use in the case that we only have doubts
without any bias towards truth or falsity: it is entirely uncertain.

Theorem 3.3 For any κ ≥ ω, Vκ is a truth value space.

Proof sketch. As Vκ has a unary operation ∼, we only need to verify that it is a completely distributive
Heyting algebra and that the extra distributivity law is satisfied. We first verify that it is distributive, complete,
a Heyting algebra, isomorphic to its dual V∂κ, and algebraic. These are sufficient conditions for it to be completely
distributive (see Theorem 10.29 of [DP02]) so all it remains to check is the extra distributivity law, which is
trivial for any chain and all Vκ are chains, so the result follows.

4 An abstract framework for semantics

We define in this section a formal framework of semantics and examine some semantics of the four languages
we have met with respect to this framework.

Definition 4.1 Let L be a logic programming language, letM be a set whose elements we will call meanings,
and let V be a truth value space. Then:

an M-semantics for L is a function m : PL →M; (4.1)

a V-answer function for M is a function a :M→ QL → V; (4.2)

and a V-system for L is a function s : PL → QL → V. (4.3)

A pair (m,a) is simply called a semantics for L.

Remark 4.2 Composing a V-answer function forM with anM-semantics for L we obtain a V-system for L.
Therefore, a semantics (m,a) naturally gives rise to the V-system a ◦m. In this way, we will be able to use
(m,a) in a context where a V-system is expected.

Definition 4.3 Let L be a logic programming language. We call two semantics of L (m1,a1) and (m2,a2)
equivalent iff the corresponding V-systems are equal. In symbols,

(m1,a1) ≈ (m2,a2)
def⇐⇒ a1 ◦m1 = a2 ◦m2.

Notice that ≈ is an equivalence relation. When the context clearly hints the intended V-answer functions under
consideration, we might abuse the notation and simply write m1 ≈m2 instead.

Definition 4.4 Let L be a logic programming language. We say that (m1,a1) refines (m2,a2) with respect
to the operator C iff:

(m1,a1) CC (m2,a2)
def⇐⇒


mi : PL →Mi

ai : Mi → QL → V
C : M1 →M2

m2 = C ◦m1

a1 = a2 ◦ C.

Lemma 4.5 The following implication holds:

(m1,a1) CC (m2,a2) =⇒ (m1,a1) ≈ (m2,a2). (4.4)
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Proof We have a1 ◦m1 = (a2 ◦ C) ◦m1 = a2 ◦ (C ◦m1) = a2 ◦m2, which by the definition of ≈ is equivalent
to (m1,a1) ≈ (m2,a2). 2

Example 4.6 (The least Herbrand model semantics LHM.) We take VLHM
def
= B; MLHM is the set of all

possible Herbrand interpretations; mLHM maps an LP program to its least Herbrand model; and

aLHM(M)(p)
def
=

ß
T, if p ∈M
F, otherwise.

Example 4.7 (The game semantics LPG.) Again VLPG
def
= B; nowMLPG is the set of strategies based on LP

programs; mLPG maps every LP program P to the set of strategies for the LPG game based on P; and finally

aLPG(Σ)(q)
def
=

ß
T, if there is a winning strategy σ ∈ Σ for q

F, otherwise.

Similarly we define the DLPG semantics.

Example 4.8 (The minimal model semantics MM.) VMM
def
= B; MMM consists of all sets of Herbrand inter-

pretations; mMM maps a DLP program to the set of its minimal models; and we take

aMM(M )(Q)
def
=

ß
T, if Q is true in every model M ∈M
F, otherwise.

Example 4.9 (The infinite-valued well-founded semantics WFκ.) Here we need VWFκ
def
= Vκ; MWFκ consists

of all possible Herbrand Vκ-interpretations of LPN programs; mWFκ maps every LPN program to its Vκ-

valued, well-founded model; and aWFκ(M)(p)
def
= M(p). Notice that the three-valued well-founded semantics

WF is equal to WFκ for κ = 1.

Remark 4.10 The ordinal κ that we use in the truth value spaces Vκ may vary depending on our needs.
The reader should note at this point that if the programs are finite, an ordinal as small as ω suffices to give
us satisfying semantics, in the sense that collapsing the obtained Vω-valued model to a three-valued one will
always yield the desired well-founded model. See [RW05] and [Lüd11] for more information.

Example 4.11 (The game semantics LPNG.) We set VLPNG
def
= V1; again MLPNG is the set of strategies

based on finite LPN programs; and mLPNG maps every finite LPN program P to the set of strategies for the
LPN game on P. Finally,

aLPNG(Σ)(q)
def
=


T, if there is a winning strategy in Σ for q

U, else, if there is a non-losing strategy in Σ for q

F, otherwise.

Example 4.12 (The infinite-valued LPN game semantics LPNGω.) VLPNGω
def
= Vω; MLPNGω is the set of

strategies based on LPN programs; mLPNGω maps every LPN program P to the set of strategies for the LPNGω

game on P; and

aLPNGω (Σ)(q)
def
=
∨¶∧

{Φω(π) | π ∈ σ}
∣∣∣ σ is a strategy in Σ for q

©
,

where Φω(−) is the payoff function defined in [GRW08].

Example 4.13 (The infinite-valued minimal model semantics MMω.) VMMω
def
= Vω; MMMω consists of all

possible Vω-valued Herbrand interpretations of finite DLPN programs; mMMω maps every finite DLPN program
to the set of its minimal, infinite-valued models; and finally set

aMMω (M )(q)
def
=
∧
{M(q) |M ∈M } .

For the time being, we have no game semantics for even finite DLPN programs, and no semantics of any
kind for infinite DLPN programs. We are about to ameliorate this situation in the following sections in which
we will obtain a model-theoretic semantics for infinite DLPN programs, as well as a couple of game semantics
for finite ones.
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5 The disjunctifier operator

5.1 Definite instantiations and D-sections

First we need to define what is a definite instantiations of a disjunctive logic program D. Informally, this is
what we get by replacing each head of D by one of its elements. Formally, we define:

Definition 5.1 Let φ = (H,B) be a disjunctive rule. If h ∈ H, then the definite rule (h,B) is a definite
instantiation of φ. D(φ) is the set of all definite instantiations of φ.

Example 5.2 Here are some disjunctive rules and their respective definite instantiations:

φ1 = a ∨ b ← p ,,,∼q φ2 = e ∨ f ∨ g ← φ3 = p ∨ q ← a ,,, b ∨ c

D(φ1) =

{
a ← p ,,,∼q
b ← p ,,,∼q

}
, D(φ2) =


e ←
f ←
g ←

 , D(φ3) =

{
p ← a ,,, b ∨ c
q ← a ,,, b ∨ c

}
.

Definition 5.3 Let D = {(Hi,Bi)}i∈I be a disjunctive program, indexed by some set of indices I. A D-section
is any choice function f ∈

∏
i∈I Hi. We write S(D) for the set of all D-sections. If f is a D-section, we define

the definite instantiation of D under f to be the definite program

Df
def
= {({f(i)} , Bi)}i∈I .

We call P a definite instantiation of D, if there is a D-section f such that P = Df . Finally, we write D(D) for
the set of all definite instantiations of D.

Example 5.4 Consider the disjunctive program

D =



s ∨ t ← p ,,, b ∨ c
a ∨ b ←

p ← a

p ← b

b ∨ c ←


.

There are 8 D-sections in total, and 8 definite instantiations of D. Let f, g ∈ S(D) be the following two:

f = {(1, t), (2, a), (3, p), (4, p), (5, b)} g = {(1, s), (2, b), (3, p), (4, p), (5, b)} .

From these two D-sections we obtain two elements of the D(D) set:

Df =


t ← p ,,, b ∨ c
a ←
p ← a

p ← b

b ←

 Dg =


s ← p ,,, b ∨ c
b ←
p ← a

p ← b

b ←

 .

Notice that f and Df correspond to the choices that appear circled on the program D above.

5.2 Definitions and theory

Definition 5.5 The operator (−)∨ is an overloaded operator that can be applied to:

8
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(1) M-meanings of LP[N] programs (that is, LP [or LPN] programs):

if m : PLP[N] →M,

then (m)∨ : PDLP[N] → ℘(M),

is defined by (m)∨(D)
def
= m(D(D)).

(2) V-answers of LP[N] programs:

if a : M→ QLP[N] → V,
then (a)∨ : ℘(M)→ QDLP[N] → V,

is defined by (a)∨(S)(Q)
def
=
∧

S∈S

∨
q∈Q

a(S)(q).

(3) V-systems of LP[N] programs:

if s : PLP[N] → QLP[N] → V,
then (s)∨ : PDLP[N] → QDLP[N] → V,

is defined by (s)∨(D)(Q)
def
=
∧

P∈D(D)

∨
q∈Q

s(P)(q).

The following theorem justifies the definitions above, and is the driving idea behind them.

Theorem 5.6 Let V be a truth value space, D a DLP-program, G a DLP-goal, and I a V-interpretation for
D. Then

I
Ä∧

D→
∨
G
ä

=
∧

P∈D(D)

∨
g∈G

I
Ä∧

P→ g
ä
.

Proof Since I is a V-interpretation, it respects the structure of V. Proof is a long computation based on the
properties of V as a truth value space, and on the definitions of S(D), D(D), and Df . Here we go. Pick a set
of indices J to index D, and denote its rules by Rj , each having a head Hj and a body Bj , so that we have
D := {Rj | j ∈ J} = {Hj ← Bj | j ∈ J}. Now compute:

I
Ä∧

D→
∨

G
ä

= I

(∧
j∈J

Rj →
∨

g∈G
g

)
(1)

= I

(∧
j∈J

Rj

)
⇒ I

(∨
g∈G

g

)
(*)

=
∧

j∈J
I(Rj)⇒

∨
g∈G

I(g) (*)

=
∧

j∈J
I(Hj ← Bj)⇒

∨
g∈G

I(g) (2)

=
∧

j∈J
I

Å∨
h∈Hj

h← Bj

ã
⇒
∨

g∈G
I(g) (3)

=
∧

j∈J

ï
I

Å∨
h∈Hj

h

ã
⇐ I(Bj)

ò
⇒
∨

g∈G
I(g) (*)

=
∧

j∈J

ï∨
h∈Hj

I(h)⇐ I(Bj)

ò
⇒
∨

g∈G
I(g) (*)

=
∧

j∈J

∨
h∈Hj

[I(h)⇐ I(Bj)]⇒
∨

g∈G
I(g) (4)

=
∨

f∈S(D)

∧
j∈J

Ä
I(f(j))⇐ I(Bj)

ä
⇒
∨

g∈G
I(g) (5)

=
∧

f∈S(D)

[∧
j∈J

Ä
I(f(j))⇐ I(Bj)

ä
⇒
∨

g∈G
I(g)

]
(6)

=
∧

f∈S(D)

[∧
j∈J

I(f(j)← Bj)⇒
∨

g∈G
I(g)

]
(*)

=
∧

f∈S(D)

[
I

(∧
j∈J

(f(j)← Bj)

)
⇒
∨

g∈G
I(g)

]
(*)

=
∧

f∈S(D)

∨
g∈G

[
I

(∧
j∈J

(f(j)← Bj)

)
⇒ I(g)

]
(7)

=
∧

f∈S(D)

∨
g∈G

î
I
Ä∧

Df

ä
⇒ I(g)

ó
(8)

=
∧

P∈D(D)

∨
g∈G

î
I
Ä∧

P
ä
⇒ I(g)

ó
(9)

=
∧

P∈D(D)

∨
g∈G

I
Ä∧

P→ g
ä

(*)

where each step of the computation is justified as follows: (1) by assumption for D and G; (2) by assumption for
Rj ; (3) by assumption for Hj ; (4) property of completely distributive Heyting Algebras (c.d.H.A.) (V is a truth
value space (t.v.s.), and therefore a c.d.H.A.); (5) by the fact that V, as a t.v.s., is c.d., and by the definition
of S(D); (6) property of c.d.H.A.; (7) property of c.d.H.A.; (8) by the definiton of Df ; (9) by the definitions of
S(D), D(D), and Df ; and all steps marked by (*) follow from the fact that I is a V-interpretation. 2
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Lemma 5.7 Let L be LP or LPN. Suppose that M is some set of meanings for L and V a truth value space.
Let m and a be an M-semantics and a V-answer function for L respectively. Then

(a ◦m)∨ = (a)∨ ◦ (m)∨;

or, following Remark 4.2, (m,a)∨ = ((m)∨, (a)∨). It follows that if (m1,a1) and (m2,a2) are two semantics
for L, then

(m1,a1) ≈ (m2,a2) =⇒ (m1,a1)∨ ≈ (m2,a2)∨. (5.1)

Proof We compute:

((a)∨ ◦ (m)∨) (D)(Q) = ((a)∨((m)∨(D))) (Q)

=
∧

M∈(m)∨(D)

∨
q∈Q

a(M)(q) (def. of (a)∨)

=
∧

M∈m(D(D))

∨
q∈Q

a(M)(q) (def. of (m)∨)

=
∧

P∈D(D)

∨
q∈Q

a(m(P))(q)

=
∧

P∈D(D)

∨
q∈Q

(a ◦m)(P)(q)

= (a ◦m)∨(D)(Q). (def. of (s)∨)

2

Lemma 5.8 Let V be a totally ordered, truth value space, and let D be a clean DLP (or DLPN) program. If
M is a model of D, then there is an LP (or LPN) program P ∈ D(D) such that M is a model of P. In symbols,

{M |M is a model of D} ⊆ {M |M is a model of P for some P ∈ D(D)} .

Proof Let us index the rules of D by some index set J , so that we have D = {Rj | j ∈ J} where for each j,
Rj := Hj ← Bj . Now let M be a model of D. Therefore, M satisfies every rule Rj of D, i.e.,

for every j ∈ J , M(Hj) ≥V M(Bj).

Since Hj is a finite set of atoms, and since V is totally ordered, we have

M(Hj) =
∨
{M(h) | h ∈ Hj} = max {M(h) | h ∈ Hj} = M(hj),

where hj is an element of Hj for which the above equality holds. Picking for each j ∈ J such an hj , we obtain
a D-section and correspondingly the definite instantiation P = {hj ← Bj | j ∈ J} ∈ D(D). We observe that
since M(hj) = M(Hj) ≥V M(Bj), M satisfies every rule of P; in other words, M is a model of P, which is
what we wanted to show. 2

6 Applications and examples

As promised, we investigate the application of the (−)∨ operator on the semantics of the non-disjunctive
languages that interest us and investigate the equivalences of the resulting semantics.

6.1 Applications on model-theoretic semantics

From LP to DLP.
Let us start with the simplest case of LP programs and their least Herbrand model semantics, LHM. We

first notice that using (−)∨ on LHM we obtain a semantics for DLP, which we will denote by LHM∨. We have:

VLHM∨ = VLHM = B MLHM∨ = ℘(MLHM).

10



Tsouanas

We proceed following the definitions:

mLHM∨(P) = (mLHM)∨(P) = mLHM(D(P)),

aLHM∨(S)(Q) = (aLHM)∨(S)(Q) =
∧

S∈S

∨
q∈Q

aLHM(S)(q),

sLHM∨(D)(Q) = (sLHM)∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sLHM(P)(q).

Theorem 6.1 The LHM∨ and the MM semantics are equivalent.

Proof To exhibit the equivalence between the minimal model semantics MM and the obtained semantics
LHM∨, we appeal to Lemma 4.5: we define a collector operator C :MLHM∨ →MMM by

C(M)
def
= {M ∈M |M is ⊆-minimal in M} ,

and verify that (mLHM∨ ,aLHM∨) CC (mMM,aMM). Indeed, according to Definition 4.4, this amounts to two
things: (1) mMM = C ◦mLHM∨ , and (2) aLHM∨ = aMM ◦ C. The latter is immediate from the definitions of
the three objects involved. For the first one, observe first that C is monotone. Next, suppose that D ∈ PDLP.
Using the monotonicity of C, and Lemma 5.8 (as B is totally ordered) we compute:

mMM(D) = C({M |M is a model of D}
⊆ C({M |M is a model of P for some P ∈ D(D)})
= C(mLHM∨(D)) = (C ◦mLHM∨)(D).

For the other direction, we have mLHM∨(D) ⊆ {M |M is a model of D}, on which we apply the monotone C
on both sides to obtain

C(mLHM∨(D)) ⊆ C ({M |M is a model of D}) = mMM(D).

Therefore, since D was arbitrary, we have mMM = C ◦mLHM∨ . 2

From LPN to DLPN.
Similarly to the LP case, this time we describe the shift from the WFκ semantics of LPN and obtain a new

semantics for DLPN, which we denote by WFκ∨. It has:

VWFκ∨ = VWFκ = Vκ MWFκ∨ = ℘(MWFκ).

Just like in the case of LHM, we follow the definitions and obtain

mWFκ∨(P) = (mWFκ)∨(P) = mWFκ(D(P)),

aWFκ∨(S)(Q) = (aWFκ)∨(S)(Q) =
∧

S∈S

∨
q∈Q

aWFκ(S)(q),

sWFκ∨(D)(Q) = (sWFκ)∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sWFκ(P)(q).

Remember that MMκ is defined only for finite programs, for which ω is a long enough ordinal. Therefore
the obtained semantics WFκ∨ is in fact more general than MMκ as it appears in the literature, since WFκ∨ gives
meaning to any DLPN program, finite or not. Yet, as long as we restrict ourselves to finite programs, we have
the following theorem:

Theorem 6.2 The WFω∨ and the MMω semantics on finite DLPN programs, are equivalent.

Proof We define the collector operator C :MWFω∨ →MMMω by

C(M)
def
= {M ∈M |M is vω-minimal in M} ,

and verify that (mWFω∨ ,aWFω∨) CC (mMMω ,aMMω ), so that the result will again be a direct consequence of
Lemma 4.5. The remaining of the proof is similar to the one of Theorem 6.1, except that this time we use the
fact that Vω is totally ordered. 2
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6.2 Applications on game semantics

As there has been no formal definition of a game semantics for infinite LPN programs, programs with negation
are also assumed to be finite.

A different game semantics for DLP.
By applying the (−)∨ operator on the LPG semantics, we can obtain a new game semantics for DLP, which

we can prove to be equivalent to the DLPG one. Since we already have a game semantics for DLP programs,
we omit the details.

A first game semantics for DLPN.
As we have already mentioned, there appears to be no game semantics for DLPN in the literature. Now

we get two such semantics by using the (−)∨ operator on LPNG and LPNGω. According to its definition,

VLPNG∨ = VLPNG = V1, VLPNGω∨ = VLPNGω = Vω,
MLPNG∨ = ℘(MLPNG); MLPNGω∨ = ℘(MLPNGω ).

Focusing on LPNGω, we have

mLPNGω∨(P) = (mLPNGω )∨(P) = mLPNGω (D(P)),

aLPNGω∨(S)(Q) = (aLPNGω )∨(S)(Q) =
∧

S∈S

∨
q∈Q

aLPNGω (S)(q),

sLPNGω∨(D)(Q) = (sLPNGω )∨(D)(Q) =
∧

P∈D(D)

∨
q∈Q

sLPNGω (P)(q);

and similarly for LPNG∨.

Again, interpreting these in terms of game rules is straightforward: Opponent begins by playing a definite
instantiation P ∈ D(D), Player then chooses an element of the goal q ∈ Q, and after this point, the players
begin playing the game ΓLPN

P (← q) normally, and the outcome of their play in it becomes the outcome of the
play on the new game.

Theorem 6.3 For finite DLPN programs, the game semantics LPNGω
∨ and the model-theoretic semantics

MMω are equivalent.

Proof Starting from the equivalence

sLPNGω = sWFω , (main result of [GRW08])

we apply the (−)∨ operator on both sides, and compute:

(sLPNGω )∨ = (sWFω )∨ (by Lemma 5.7)

= sMMω (by Theorem 6.2).

2

Since we can collapse any infinite-valued space into the three-valued V1, we have chosen to present only the
more general, infinite-valued semantics. But if for any reason we want to restrict ourselves to the three-valued
space V1, we can easily obtain the analogous results.

7 Conclusion

We have defined the notion of a truth value space, and used it in the development of the abstract semantic
framework. We saw how various model-theoretic and game-theoretic semantics fit in this framework, becoming
concrete mathematical objects of study. We then proceeded to define the (−)∨ operator, which we applied on
them to obtain a first model-theoretic semantics for infinite DLPN programs, as well as a first game-theoretic
semantics for finite ones. This process has a pleasant impact on the already-known DLPN semantics, because
using this completely different approach, we end up with equivalent semantics; thus raising our condifence in
their correctness.

It remains to be investigated how other interesting semantics can be placed within this framework. In par-
ticular, proof-theoretic and coalgebraic ones, thus obtaining some new semantics of these kinds for disjunctive
languages as further applications of (−)∨.

12



Tsouanas

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Computation,
2:297–347, 1992.

[AP91] Jean-Marc Andreoli and Remo Pareschi. Logic programming with sequent systems. In Peter Schroeder-Heister, editor,
Extensions of Logic Programming, volume 475 of Lecture Notes in Computer Science, pages 1–30. Springer, 1991.

[Apt90] Krzysztof R. Apt. Logic programming. In Handbook of theoretical computer science (vol. B): formal models and
semantics, pages 493–574. MIT Press, 1990.

[BM09] Filippo Bonchi and Ugo Montanari. Reactive systems, (semi-)saturated semantics and coalgebras on presheaves.
Theoretical Computer Science, 410(41):4044–4066, 2009.

[BZ13] Filippo Bonchi and Fabio Zanasi. Saturated semantics for coalgebraic logic programming. In Reiko Heckel and Stefan
Milius, editors, Algebra and Coalgebra in Computer Science, volume 8089 of LNCS, pages 80–94. Springer, 2013.

[Cla78] Keith Clark. Negation as failure. Logic and Databases, pages 293–322, 1978.

[CPRW07] Pedro Cabalar, David Pearce, Panos Rondogiannis, and William Wadge. A purely model-theoretic semantics for dis-
junctive logic programs with negation. In Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Logic Programming
and Nonmonotonic Reasoning, volume 4483 of Lecture Notes in Computer Science, pages 44–57. Springer, 2007.

[DCLN98] Roberto Di Cosmo, Jean-Vincent Loddo, and Stephane Nicolet. A game semantics foundation for logic programming.
In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke, editors, Principles of Declarative Programming, volume 1490
of Lecture Notes in Computer Science, pages 355–373. Springer, 1998. 10.1007/BFb0056626.

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order (2. ed.). CUP, 2002.

[Fit85] Melvin Fitting. A Kripke–Kleene semantics for logic programs. Journal of Logic Programming, 2(4):295–312, 1985.

[Fit99] Melvin Fitting. Fixpoint semantics for logic programming—a survey. Theoretical Computer Science, 278:25–51, 1999.

[Gel08] Michael Gelfond. Answer sets. In F. van Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge
Representation, chapter 7. Elsevier, 2008.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. MIT Press, 1988.

[GRW08] Chrysida Galanaki, Panos Rondogiannis, and William W. Wadge. An infinite-game semantics for well-founded negation
in logic programming. Annals of Pure and Applied Logic, 151(2-3):70–88, 2008.

[KMP10] Ekaterina Komendantskaya, Guy McCusker, and John Power. Coalgebraic semantics for parallel derivation strategies
in logic programming. In Michael Johnson and Dusko Pavlovic, editors, AMAST, volume 6486 of Lecture Notes in
Computer Science, pages 111–127. Springer, 2010.

[KP11] Ekaterina Komendantskaya and John Power. Coalgebraic semantics for derivations in logic programming. In Proceed-
ings of the 4th intl. conf. on Algebra and coalgebra in Comp. Sc., CALCO’11, pages 268–282. Springer, 2011.

[KPS13] Ekaterina Komendantskaya, John Power, and Martin Schmidt. Coalgebraic logic programming: from semantics to
implementation. CoRR, abs/1312.6568, 2013.

[Kun87] Kenneth Kunen. Negation in logic programming. Journal of Logic Programming, 4(4):289–308, 1987.

[Llo87] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1987.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of disjunctive logic programming. MIT Press, 1992.
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